Machine Learning in Marketing: Overview, Learning Strategies, Applications, and Future Developments
Author
Abstract
Suggested Citation
DOI: 10.1561/1700000065
Download full text from publisher
References listed on IDEAS
- Hema Yoganarasimhan, 2020. "Search Personalization Using Machine Learning," Management Science, INFORMS, vol. 66(3), pages 1045-1070, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hasan Beyari & Hatem Garamoun, 2022. "The Effect of Artificial Intelligence on End-User Online Purchasing Decisions: Toward an Integrated Conceptual Framework," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
- Andrea Mauro & Andrea Sestino & Andrea Bacconi, 2022. "Machine learning and artificial intelligence use in marketing: a general taxonomy," Italian Journal of Marketing, Springer, vol. 2022(4), pages 439-457, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tino Werner, 2023. "Quantitative robustness of instance ranking problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 335-368, April.
- Omid Rafieian & Hema Yoganarasimhan, 2021. "Targeting and Privacy in Mobile Advertising," Marketing Science, INFORMS, vol. 40(2), pages 193-218, March.
- Bergemann, Dirk & Ottaviani, Marco, 2021.
"Information Markets and Nonmarkets,"
CEPR Discussion Papers
16459, C.E.P.R. Discussion Papers.
- Dirk Bergemann & Marco Ottaviani, 2021. "Information Markets and Nonmarkets," Cowles Foundation Discussion Papers 2296, Cowles Foundation for Research in Economics, Yale University.
- Cloarec, Julien, 2020. "The personalization–privacy paradox in the attention economy," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
- Zhang, Ruchuan & Gao, Weiyan & Chen, Shanshan & Zhou, Li & Li, Aijun, 2024. "Dose digital transformation contribute to improving financing efficiency? Evidence and implications for energy enterprises in China," Energy, Elsevier, vol. 300(C).
- Schaefer, Maximilian & Sapi, Geza, 2023.
"Complementarities in learning from data: Insights from general search,"
Information Economics and Policy, Elsevier, vol. 65(C).
- Maximilian Schäfer & Geza Sapi, 2023. "Complementarities in learning from data: insights from general search," Post-Print hal-04261926, HAL.
- Omid Rafieian, 2023. "Optimizing User Engagement Through Adaptive Ad Sequencing," Marketing Science, INFORMS, vol. 42(5), pages 910-933, September.
- Lohmann, Paul M & Gsottbauer, Elisabeth & Farrington, James & Human, Steve & Reisch, Lucia A, 2024. "Choice architecture promotes sustainable choices in online food-delivery apps," LSE Research Online Documents on Economics 125835, London School of Economics and Political Science, LSE Library.
- Josué Martínez-Garmendia, 2024. "Machine learning for product choice prediction," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(3), pages 656-667, September.
- Reuter-Oppermann, Melanie & Wolff, Clemens & Pumplun, Luisa, 2021. "Next Frontiers in Emergency Medical Services in Germany: Identifying Gaps between Academia and Practice," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 124665, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
- Hema Yoganarasimhan & Ebrahim Barzegary & Abhishek Pani, 2020. "Design and Evaluation of Personalized Free Trials," Papers 2006.13420, arXiv.org.
- Ali Goli & Anja Lambrecht & Hema Yoganarasimhan, 2024. "A Bias Correction Approach for Interference in Ranking Experiments," Marketing Science, INFORMS, vol. 43(3), pages 590-614, May.
- Hanyao Gao & Gang Kou & Haiming Liang & Hengjie Zhang & Xiangrui Chao & Cong-Cong Li & Yucheng Dong, 2024. "Machine learning in business and finance: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
- Shengjun Mao & Sanjeev Dewan & Yi-Jen (Ian) Ho, 2023. "Personalized Ranking at a Mobile App Distribution Platform," Information Systems Research, INFORMS, vol. 34(3), pages 811-827, September.
- Herhausen, Dennis & Bernritter, Stefan F. & Ngai, Eric W.T. & Kumar, Ajay & Delen, Dursun, 2024. "Machine learning in marketing: Recent progress and future research directions," Journal of Business Research, Elsevier, vol. 170(C).
- Florian Peiseler & Alexander Rasch & Shiva Shekhar, 2022. "Imperfect information, algorithmic price discrimination, and collusion," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(2), pages 516-549, April.
- Alantari, Huwail J. & Currim, Imran S. & Deng, Yiting & Singh, Sameer, 2022. "An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews," International Journal of Research in Marketing, Elsevier, vol. 39(1), pages 1-19.
- Hema Yoganarasimhan & Ebrahim Barzegary & Abhishek Pani, 2023. "Design and Evaluation of Optimal Free Trials," Management Science, INFORMS, vol. 69(6), pages 3220-3240, June.
- Tino Werner, 2022. "Elicitability of Instance and Object Ranking," Decision Analysis, INFORMS, vol. 19(2), pages 123-140, June.
More about this item
Keywords
Marketing Research; Bayesian learning; Deep learning; Classification and prediction; Statistical learning theory; Model choice;All these keywords.
JEL classification:
- M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:now:fntmkt:1700000065. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucy Wiseman (email available below). General contact details of provider: http://www.nowpublishers.com/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.