IDEAS home Printed from https://ideas.repec.org/a/pal/jmarka/v10y2022i4d10.1057_s41270-021-00145-4.html
   My bibliography  Save this article

Prediction and profitability in market segmentation typing tools

Author

Listed:
  • Marco Vriens

    (Kwantum Analytics)

  • Nathan Bosch

    (Kwantum Analytics)

  • Chad Vidden

    (University of Wisconsin, La Crosse)

  • Jason Talwar

    (Brown University School of Engineering)

Abstract

A vital component in strategic segmentation is the typing tool. Little is known about their prediction performance. Even less is known how well they perform at the segment-level, in imbalanced situations, and how well they predict the smallest (minority) segment. We investigate using simulated and real-life data, how well typing tools perform overall and at the specific segment-level and we show the following. One, even when overall prediction accuracy is good, specific segments may be predicted poorly. Two, for valuable (minority) segments with high targeting costs misclassification can have a substantial impact on the profitability of the segmentation strategy. Poor prediction of a minority segment can happen in high and mildly imbalanced segments. Three, prediction of minority segments can vary substantially across different base classifiers and across imbalance correction methods. We find that performance can vary substantially across base classifiers and that support vector machines, overall, perform best. Four, the prediction of a (minority) segment can always be improved by using imbalance correction methods, and overall random under-sampling performs best.

Suggested Citation

  • Marco Vriens & Nathan Bosch & Chad Vidden & Jason Talwar, 2022. "Prediction and profitability in market segmentation typing tools," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(4), pages 360-389, December.
  • Handle: RePEc:pal:jmarka:v:10:y:2022:i:4:d:10.1057_s41270-021-00145-4
    DOI: 10.1057/s41270-021-00145-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41270-021-00145-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41270-021-00145-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Georgios Marinakos & Sophia Daskalaki, 2017. "Imbalanced customer classification for bank direct marketing," Journal of Marketing Analytics, Palgrave Macmillan, vol. 5(1), pages 14-30, March.
    2. Coussement, Kristof & Van den Bossche, Filip A.M. & De Bock, Koen W., 2014. "Data accuracy's impact on segmentation performance: Benchmarking RFM analysis, logistic regression, and decision trees," Journal of Business Research, Elsevier, vol. 67(1), pages 2751-2758.
    3. Paul H. Lee, 2014. "Resampling Methods Improve the Predictive Power of Modeling in Class-Imbalanced Datasets," IJERPH, MDPI, vol. 11(9), pages 1-14, September.
    4. Patricia M. West & Patrick L. Brockett & Linda L. Golden, 1997. "A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice," Marketing Science, INFORMS, vol. 16(4), pages 370-391.
    5. K. Coussement & D. Van Den Poel, 2006. "Churn Prediction in Subscription Services: an Application of Support Vector Machines While Comparing Two Parameter-Selection Techniques," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/412, Ghent University, Faculty of Economics and Business Administration.
    6. Pires, Guilherme D. & Stanton, John & Stanton, Patricia, 2011. "Revisiting the substantiality criterion: From ethnic marketing to market segmentation," Journal of Business Research, Elsevier, vol. 64(9), pages 988-996, September.
    7. Mora Cortez, Roberto & Højbjerg Clarke, Ann & Freytag, Per Vagn, 2021. "B2B market segmentation: A systematic review and research agenda," Journal of Business Research, Elsevier, vol. 126(C), pages 415-428.
    8. King, Gary & Zeng, Langche, 2001. "Logistic Regression in Rare Events Data," Political Analysis, Cambridge University Press, vol. 9(2), pages 137-163, January.
    9. Gilseung Ahn & You-Jin Park & Sun Hur, 2021. "A Membership Probability–Based Undersampling Algorithm for Imbalanced Data," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 2-15, April.
    10. McCarty, John A. & Hastak, Manoj, 2007. "Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression," Journal of Business Research, Elsevier, vol. 60(6), pages 656-662, June.
    11. Susan Brudvig & Michael J. Brusco & J. Dennis Cradit, 2019. "Joint selection of variables and clusters: recovering the underlying structure of marketing data," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(1), pages 1-12, March.
    12. Ying Liu & Sudha Ram & Robert F. Lusch & Michael Brusco, 2010. "Multicriterion Market Segmentation: A New Model, Implementation, and Evaluation," Marketing Science, INFORMS, vol. 29(5), pages 880-894, 09-10.
    13. Lemmens, A. & Croux, C., 2006. "Bagging and boosting classification trees to predict churn," Other publications TiSEM d5cb664d-5859-44db-a621-e, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Petrescu & Anjala S. Krishen, 2023. "Mapping 2022 in Journal of Marketing Analytics: what lies ahead?," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(1), pages 1-4, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coussement, Kristof & De Bock, Koen W., 2013. "Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning," Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
    2. Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
    3. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    4. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    5. Albrecht, Tobias & Rausch, Theresa Maria & Derra, Nicholas Daniel, 2021. "Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting," Journal of Business Research, Elsevier, vol. 123(C), pages 267-278.
    6. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    7. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    8. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    9. Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
    10. Udoinyang G. Inyang & Okure O. Obot & Moses E. Ekpenyong & Aliu M. Bolanle, 2017. "Unsupervised Learning Framework for Customer Requisition and Behavioral Pattern Classification," Modern Applied Science, Canadian Center of Science and Education, vol. 11(9), pages 151-151, September.
    11. K. W. De Bock & D. Van Den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/717, Ghent University, Faculty of Economics and Business Administration.
    12. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    13. M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
    14. Li, Yixin & Hou, Bingzhang & Wu, Yue & Zhao, Donglai & Xie, Aoran & Zou, Peng, 2021. "Giant fight: Customer churn prediction in traditional broadcast industry," Journal of Business Research, Elsevier, vol. 131(C), pages 630-639.
    15. Venkatesh Shankar & Sohil Parsana, 2022. "An overview and empirical comparison of natural language processing (NLP) models and an introduction to and empirical application of autoencoder models in marketing," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1324-1350, November.
    16. M. Ballings & D. Van Den Poel & E. Verhagen, 2013. "Evaluating the Added Value of Pictorial Data for Customer Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/869, Ghent University, Faculty of Economics and Business Administration.
    17. Coussement, Kristof & Benoit, Dries Frederik & Van den Poel, Dirk, 2009. "Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models," Working Papers 2009/18, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    18. Eva Ascarza & Oded Netzer & Bruce G. S. Hardie, 2018. "Some Customers Would Rather Leave Without Saying Goodbye," Marketing Science, INFORMS, vol. 37(1), pages 54-77, January.
    19. Horvat Ivan & Pejić Bach Mirjana & Merkač Skok Marjana, 2014. "Decision Tree Approach to Discovering Fraud in Leasing Agreements," Business Systems Research, Sciendo, vol. 5(2), pages 61-71, September.
    20. Azarnoush Ansari & Arash Riasi, 2016. "Customer Clustering Using a Combination of Fuzzy C-Means and Genetic Algorithms," International Journal of Business and Management, Canadian Center of Science and Education, vol. 11(7), pages 1-59, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jmarka:v:10:y:2022:i:4:d:10.1057_s41270-021-00145-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.