IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v82y2018icp87-94.html
   My bibliography  Save this article

Bayesian ratemaking with common effects modeled by mixture of Polya tree processes

Author

Listed:
  • Zhang, Jianjun
  • Qiu, Chunjuan
  • Wu, Xianyi

Abstract

In classical models for Bayesian ratemaking, claims are usually assumed to be independent over risks. However, this assumption may be violated because there are situations that could derive possible dependence among the insured individuals. This paper aims to investigate the typical problem of experience ratemaking to account for a special type of dependence that is known as common effects in the literature. Polya tree processes are employed to model the common effects and, by means of an MCMC scheme, the corresponding Bayesian premiums are numerically computed. This provides a useful alternative to the well known results on Bayesian ratemaking with common effects.

Suggested Citation

  • Zhang, Jianjun & Qiu, Chunjuan & Wu, Xianyi, 2018. "Bayesian ratemaking with common effects modeled by mixture of Polya tree processes," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 87-94.
  • Handle: RePEc:eee:insuma:v:82:y:2018:i:c:p:87-94
    DOI: 10.1016/j.insmatheco.2018.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668717301786
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2018.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    2. Lau, John W. & Siu, Tak Kuen & Yang, Hailiang, 2006. "On Bayesian Mixture Credibility," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 573-588, November.
    3. Hanson, Timothy E., 2006. "Inference for Mixtures of Finite Polya Tree Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1548-1565, December.
    4. Fellingham, Gilbert W. & Kottas, Athanasios & Hartman, Brian M., 2015. "Bayesian nonparametric predictive modeling of group health claims," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 1-10.
    5. repec:dau:papers:123456789/3549 is not listed on IDEAS
    6. Wen, Limin & Wu, Xianyi & Zhou, Xian, 2009. "The credibility premiums for models with dependence induced by common effects," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 19-25, February.
    7. Yeo, Keng Leong & Valdez, Emiliano A., 2006. "Claim dependence with common effects in credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 609-629, June.
    8. Dunson, David B. & Xue, Ya & Carin, Lawrence, 2008. "The Matrix Stick-Breaking Process: Flexible Bayes Meta-Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 317-327, March.
    9. Edward Frees & Ping Wang, 2005. "Credibility Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(2), pages 31-48.
    10. Wu, Xianyi & Zhou, Xian, 2006. "A new characterization of distortion premiums via countable additivity for comonotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 324-334, April.
    11. Heilmann, Wolf-Rudiger, 1986. "On the impact of independence of risks on stop loss premiums," Insurance: Mathematics and Economics, Elsevier, vol. 5(3), pages 197-199, July.
    12. Purcaru, Oana & Denuit, Michel, 2003. "Dependence in Dynamic Claim Frequency Credibility Models," ASTIN Bulletin, Cambridge University Press, vol. 33(1), pages 23-40, May.
    13. Berger J. O & Guglielmi A., 2001. "Bayesian and Conditional Frequentist Testing of a Parametric Model Versus Nonparametric Alternatives," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 174-184, March.
    14. Xiaoqiang Cai & Limin Wen & Xianyi Wu & Xian Zhou, 2015. "Credibility Estimation of Distribution Functions with Applications to Experience Rating in General Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 19(4), pages 311-335, October.
    15. Muller, Alfred, 1997. "Stop-loss order for portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 219-223, December.
    16. Pan, Maolin & Wang, Rongming & Wu, Xianyi, 2008. "On the consistency of credibility premiums regarding Esscher principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 119-126, February.
    17. Hürlimann, Werner, 1993. "Bivariate distributions with diatomic conditionals and stop-loss transforms of random sums," Statistics & Probability Letters, Elsevier, vol. 17(4), pages 329-335, July.
    18. David B. Dunson & Ju-Hyun Park, 2008. "Kernel stick-breaking processes," Biometrika, Biometrika Trust, vol. 95(2), pages 307-323.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calcetero Vanegas, Sebastián & Badescu, Andrei L. & Lin, X. Sheldon, 2024. "Effective experience rating for large insurance portfolios via surrogate modeling," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 25-43.
    2. Sebastian Calcetero-Vanegas & Andrei L. Badescu & X. Sheldon Lin, 2022. "Effective experience rating for large insurance portfolios via surrogate modeling," Papers 2211.06568, arXiv.org, revised Jun 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Limin & Wu, Xianyi & Zhou, Xian, 2009. "The credibility premiums for models with dependence induced by common effects," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 19-25, February.
    2. Qiang Zhang & Lijun Wu & Qianqian Cui, 2017. "The balanced credibility estimators with correlation risk and inflation factor," Statistical Papers, Springer, vol. 58(3), pages 659-672, September.
    3. Wei Wang & Limin Wen & Zhixin Yang & Quan Yuan, 2020. "Quantile Credibility Models with Common Effects," Risks, MDPI, vol. 8(4), pages 1-10, September.
    4. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    5. Yeo, Keng Leong & Valdez, Emiliano A., 2006. "Claim dependence with common effects in credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 609-629, June.
    6. Loisel, Stéphane & Trufin, Julien, 2014. "Properties of a risk measure derived from the expected area in red," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
    7. Yi, Zhang & Weng, Chengguo, 2006. "On the correlation order," Statistics & Probability Letters, Elsevier, vol. 76(13), pages 1410-1416, July.
    8. Dhaene, Jan & Denuit, Michel, 1999. "The safest dependence structure among risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 11-21, September.
    9. Salazar García, Juan Fernando & Guzmán Aguilar, Diana Sirley & Hoyos Nieto, Daniel Arturo, 2023. "Modelación de una prima de seguros mediante la aplicación de métodos actuariales, teoría de fallas y Black-Scholes en la salud en Colombia [Modelling of an insurance premium through the application," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 35(1), pages 330-359, June.
    10. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    11. Muhsin Tamturk & Dominic Cortis & Mark Farrell, 2020. "Examining the Effects of Gradual Catastrophes on Capital Modelling and the Solvency of Insurers: The Case of COVID-19," Risks, MDPI, vol. 8(4), pages 1-13, December.
    12. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.
    13. Frees, Edward W. & Wang, Ping, 2006. "Copula credibility for aggregate loss models," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 360-373, April.
    14. Barrientos, Andrés F. & Canale, Antonio, 2021. "A Bayesian goodness-of-fit test for regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    15. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2019. "Home and Motor insurance joined at a household level using multivariate credibility," LIDAM Discussion Papers ISBA 2019013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Huang, Yifan & Meng, Shengwang, 2020. "A Bayesian nonparametric model and its application in insurance loss prediction," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 84-94.
    17. Marta Cardin & Elisa Pagani, 2008. "Some proposals about multivariate risk measurement," Working Papers 165, Department of Applied Mathematics, Università Ca' Foscari Venezia.
    18. Chen, Yuhui & Hanson, Timothy E., 2014. "Bayesian nonparametric k-sample tests for censored and uncensored data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 335-346.
    19. Ma, Zichen & Hanson, Timothy E., 2020. "Bayesian nonparametric test for independence between random vectors," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    20. Cheung, Ka Chun, 2010. "Comonotonic convex upper bound and majorization," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 154-158, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:82:y:2018:i:c:p:87-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.