IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v115y2024icp13-21.html
   My bibliography  Save this article

Tweedie multivariate semi-parametric credibility with the exchangeable correlation

Author

Listed:
  • Jeong, Himchan

Abstract

This article proposes a framework for determining credibility premiums for multiple coverages in a compound risk model with Tweedie distribution. The framework builds upon previous results on credibility premium and provides an explicit multivariate credibility premium formula that is applicable to the Tweedie family assuming that the unobserved heterogeneity for the multiple coverage have the common correlation. The practical applicability of the proposed framework is evaluated through simulation and empirical analysis using the LGPIF dataset, which includes claims and policy characteristics data for various types of coverages observed over time. The findings suggest that the proposed framework can be useful in ratemaking practice by incorporating a non-trivial dependence structure among the multiple types of claims.

Suggested Citation

  • Jeong, Himchan, 2024. "Tweedie multivariate semi-parametric credibility with the exchangeable correlation," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 13-21.
  • Handle: RePEc:eee:insuma:v:115:y:2024:i:c:p:13-21
    DOI: 10.1016/j.insmatheco.2023.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668723001099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2023.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Gee Y. & Shi, Peng, 2019. "A dependent frequency–severity approach to modeling longitudinal insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 115-129.
    2. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    3. Jae Youn Ahn & Himchan Jeong & Yang Lu, 2023. "A simple Bayesian state-space approach to the collective risk models," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2023(5), pages 509-529, May.
    4. Ou Dang & Mingbin Feng & Mary R. Hardy, 2020. "Efficient Nested Simulation for Conditional Tail Expectation of Variable Annuities," North American Actuarial Journal, Taylor & Francis Journals, vol. 24(2), pages 187-210, April.
    5. Peng Shi, 2016. "Insurance ratemaking using a copula-based multivariate Tweedie model," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2016(3), pages 198-215, March.
    6. Frangos, Nicholas E. & Vrontos, Spyridon D., 2001. "Design of Optimal Bonus-Malus Systems With a Frequency and a Severity Component On an Individual Basis in Automobile Insurance," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 1-22, May.
    7. Jewell, William S., 1974. "Credible Means are exact Bayesian for Exponential Families," ASTIN Bulletin, Cambridge University Press, vol. 8(1), pages 77-90, September.
    8. Daniel H. Alai & Zinoviy Landsman & Michael Sherris, 2016. "Multivariate Tweedie lifetimes: the impact of dependence," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2016(8), pages 692-712, September.
    9. Lin, X. Sheldon & Yang, Shuai, 2020. "Fast and efficient nested simulation for large variable annuity portfolios: A surrogate modeling approach," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 85-103.
    10. Peng Shi & Gee Y. Lee, 2022. "Copula Regression for Compound Distributions with Endogenous Covariates with Applications in Insurance Deductible Pricing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1094-1109, September.
    11. Guojun Gan & Emiliano A. Valdez, 2018. "Regression Modeling for the Valuation of Large Variable Annuity Portfolios," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(1), pages 40-54, January.
    12. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    13. Ohlsson, Esbjörn & Johansson, Björn, 2006. "Exact Credibility and Tweedie Models," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 121-133, May.
    14. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2016. "Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 63-78.
    15. Jeong, Himchan & Valdez, Emiliano A., 2020. "Predictive compound risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 182-195.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianxing Yan & Yi Lu & Himchan Jeong, 2024. "Dependence Modelling for Heavy-Tailed Multi-Peril Insurance Losses," Risks, MDPI, vol. 12(6), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheung, Eric C.K. & Ni, Weihong & Oh, Rosy & Woo, Jae-Kyung, 2021. "Bayesian credibility under a bivariate prior on the frequency and the severity of claims," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 274-295.
    2. Wing Fung Chong & Haoen Cui & Yuxuan Li, 2021. "Pseudo-Model-Free Hedging for Variable Annuities via Deep Reinforcement Learning," Papers 2107.03340, arXiv.org, revised Oct 2022.
    3. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    4. Li, Yinhuan & Fung, Tsz Chai & Peng, Liang & Qian, Linyi, 2023. "Diagnostic tests before modeling longitudinal actuarial data," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 310-325.
    5. Salazar García, Juan Fernando & Guzmán Aguilar, Diana Sirley & Hoyos Nieto, Daniel Arturo, 2023. "Modelación de una prima de seguros mediante la aplicación de métodos actuariales, teoría de fallas y Black-Scholes en la salud en Colombia [Modelling of an insurance premium through the application," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 35(1), pages 330-359, June.
    6. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    7. Massimo Costabile & Fabio Viviano, 2021. "Modeling the Future Value Distribution of a Life Insurance Portfolio," Risks, MDPI, vol. 9(10), pages 1-17, October.
    8. Alicja Wolny-Dominiak & Tomasz Żądło, 2021. "The Measures of Accuracy of Claim Frequency Credibility Predictor," Sustainability, MDPI, vol. 13(21), pages 1-13, October.
    9. Jiang, Ruihong & Saunders, David & Weng, Chengguo, 2023. "Two-phase selection of representative contracts for valuation of large variable annuity portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 293-309.
    10. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2024. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.
    11. Dang, Ou & Feng, Mingbin & Hardy, Mary R., 2023. "Two-stage nested simulation of tail risk measurement: A likelihood ratio approach," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 1-24.
    12. Tzougas, George & Jeong, Himchan, 2021. "An expectation-maximization algorithm for the exponential-generalized inverse Gaussian regression model with varying dispersion and shape for modelling the aggregate claim amount," LSE Research Online Documents on Economics 108210, London School of Economics and Political Science, LSE Library.
    13. Martin Eling & Kwangmin Jung, 2022. "Heterogeneity in cyber loss severity and its impact on cyber risk measurement," Risk Management, Palgrave Macmillan, vol. 24(4), pages 273-297, December.
    14. George Tzougas & Himchan Jeong, 2021. "An Expectation-Maximization Algorithm for the Exponential-Generalized Inverse Gaussian Regression Model with Varying Dispersion and Shape for Modelling the Aggregate Claim Amount," Risks, MDPI, vol. 9(1), pages 1-17, January.
    15. Gigante, Patrizia & Picech, Liviana & Sigalotti, Luciano, 2013. "Claims reserving in the hierarchical generalized linear model framework," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 381-390.
    16. Sebastian Calcetero-Vanegas & Andrei L. Badescu & X. Sheldon Lin, 2022. "Effective experience rating for large insurance portfolios via surrogate modeling," Papers 2211.06568, arXiv.org, revised Jun 2024.
    17. Minwoo Kim & Himchan Jeong & Dipak Dey, 2022. "Approximation of Zero-Inflated Poisson Credibility Premium via Variational Bayes Approach," Risks, MDPI, vol. 10(3), pages 1-11, March.
    18. Gweon, Hyukjun & Li, Shu, 2021. "Batch mode active learning framework and its application on valuing large variable annuity portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 105-115.
    19. Emilio Gómez-Déniz & Enrique Calderín-Ojeda, 2018. "Multivariate Credibility in Bonus-Malus Systems Distinguishing between Different Types of Claims," Risks, MDPI, vol. 6(2), pages 1-11, April.
    20. Tianxing Yan & Yi Lu & Himchan Jeong, 2024. "Dependence Modelling for Heavy-Tailed Multi-Peril Insurance Losses," Risks, MDPI, vol. 12(6), pages 1-17, June.

    More about this item

    Keywords

    Credibility premium; Dependence modeling; Multi-peril insurance; Posterior ratemaking; Tweedie distribution;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:115:y:2024:i:c:p:13-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.