IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v93y2020icp216-229.html
   My bibliography  Save this article

Evolutionary credibility risk premium

Author

Listed:
  • Chen, Yongzhao
  • Cheung, Ka Chun
  • Choi, Hugo Ming Cheung
  • Yam, Sheung Chi Phillip

Abstract

This article provides the first systematic study on the risk premium calibration under the celebrated evolutionary credibility models which had been studied in Jones and Gerber (1975) and Albrecht (1985) but only for net premium, while our work now simultaneously estimates the process variance and the hypothetical mean. Our objective is to minimize the mean square deviation of the empirical estimates from the respective theoretical mean and process variance, which leads to extending the set of classical normal equations. Despite that no more closed-form solutions of the normal equations can be obtained, we obtain an effective numerical scheme featuring a novel recursive LU algorithm for the progressively enlarging coefficient matrices, and we shall also demonstrate its effectiveness through several common time series models, namely ARMA. Our proposed method can also be viewed as a robust extension of the recent SURE estimator used in statistics literature, which assumes the underlying data being i.i.d. with the Normal-Inverse-Wishart structure, while we allow a temporal dependence structure among the data without specifying the probability model.

Suggested Citation

  • Chen, Yongzhao & Cheung, Ka Chun & Choi, Hugo Ming Cheung & Yam, Sheung Chi Phillip, 2020. "Evolutionary credibility risk premium," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 216-229.
  • Handle: RePEc:eee:insuma:v:93:y:2020:i:c:p:216-229
    DOI: 10.1016/j.insmatheco.2020.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668720300688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2020.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albrecht, Peter, 1985. "An Evolutionary Credibility Model for Claim Numbers," ASTIN Bulletin, Cambridge University Press, vol. 15(1), pages 1-17, April.
    2. Pitselis, Georgios, 2017. "Risk measures in a quantile regression credibility framework with Fama/French data applications," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 122-134.
    3. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, June.
    4. Kim, Joseph H.T. & Jeon, Yongho, 2013. "Credibility theory based on trimming," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 36-47.
    5. Schinzinger, Edo & Denuit, Michel M. & Christiansen, Marcus C., 2016. "A multivariate evolutionary credibility model for mortality improvement rates," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 70-81.
    6. Schinzinger, Edo & Denuit, Michel & Christiansen, Marcus, 2016. "A multivariate evolutionary credibility model for mortality improvement rates," LIDAM Reprints ISBA 2016019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Pitselis, Georgios, 2016. "Credible risk measures with applications in actuarial sciences and finance," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 373-386.
    8. Xacur, Oscar Alberto Quijano & Garrido, José, 2018. "Bayesian credibility for GLMs," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 180-189.
    9. Pitselis, Georgios, 2013. "Quantile credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 477-489.
    10. Sundt, Bjorn, 1982. "Invariantly recursive credibility estimation," Insurance: Mathematics and Economics, Elsevier, vol. 1(3), pages 219-240, July.
    11. Bing-Yi Jing & Zhouping Li & Guangming Pan & Wang Zhou, 2016. "On SURE-Type Double Shrinkage Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1696-1704, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salazar García, Juan Fernando & Guzmán Aguilar, Diana Sirley & Hoyos Nieto, Daniel Arturo, 2023. "Modelación de una prima de seguros mediante la aplicación de métodos actuariales, teoría de fallas y Black-Scholes en la salud en Colombia [Modelling of an insurance premium through the application," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 35(1), pages 330-359, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2022. "Satisficing credibility for heterogeneous risks," European Journal of Operational Research, Elsevier, vol. 298(2), pages 752-768.
    2. Pitselis, Georgios, 2017. "Risk measures in a quantile regression credibility framework with Fama/French data applications," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 122-134.
    3. Salazar García, Juan Fernando & Guzmán Aguilar, Diana Sirley & Hoyos Nieto, Daniel Arturo, 2023. "Modelación de una prima de seguros mediante la aplicación de métodos actuariales, teoría de fallas y Black-Scholes en la salud en Colombia [Modelling of an insurance premium through the application," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 35(1), pages 330-359, June.
    4. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    5. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    6. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    7. Pitselis, Georgios, 2020. "Multi-stage nested classification credibility quantile regression model," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 162-176.
    8. Wei Wang & Limin Wen & Zhixin Yang & Quan Yuan, 2020. "Quantile Credibility Models with Common Effects," Risks, MDPI, vol. 8(4), pages 1-10, September.
    9. Bozikas, Apostolos & Pitselis, Georgios, 2020. "Incorporating crossed classification credibility into the Lee–Carter model for multi-population mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 353-368.
    10. Apostolos Bozikas & Georgios Pitselis, 2019. "Credible Regression Approaches to Forecast Mortality for Populations with Limited Data," Risks, MDPI, vol. 7(1), pages 1-22, February.
    11. Calcetero Vanegas, Sebastián & Badescu, Andrei L. & Lin, X. Sheldon, 2024. "Effective experience rating for large insurance portfolios via surrogate modeling," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 25-43.
    12. Syuhada, Khreshna & Hakim, Arief, 2024. "Risk quantification and validation for green energy markets: New insight from a credibility theory approach," Finance Research Letters, Elsevier, vol. 62(PA).
    13. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    14. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    15. Härdle, Wolfgang Karl & Burnecki, Krzysztof & Weron, Rafał, 2004. "Simulation of risk processes," Papers 2004,01, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    16. Kume, Alfred & Hashorva, Enkelejd, 2012. "Calculation of Bayes premium for conditional elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 632-635.
    17. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    18. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    19. Mourdoukoutas, Fotios & Boonen, Tim J. & Koo, Bonsoo & Pantelous, Athanasios A., 2021. "Pricing in a competitive stochastic insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 44-56.
    20. Mohamed Amine Lkabous & Jean-François Renaud, 2018. "A VaR-Type Risk Measure Derived from Cumulative Parisian Ruin for the Classical Risk Model," Risks, MDPI, vol. 6(3), pages 1-11, August.

    More about this item

    Keywords

    Credibility theory; Bühlmann’s evolutionary model; Variance (shrinkage) estimator; Risk-loaded premium; LU factorization; ARMA;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:93:y:2020:i:c:p:216-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.