IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v33y2022i1p29-48.html
   My bibliography  Save this article

Modelación de riesgo de crédito de personas naturales. Un caso aplicado a una caja de compensación familiar colombiana
[Natural People Credit Risk Modeling. An applied case in a Colombian Family Benefit Fund]

Author

Listed:
  • Rodríguez Guevara, David Esteban

    (Instituto Tecnológico Metropolitano de Medellín (Colombia))

  • Rendón García, Juan Fernando

    (Instituto Tecnológico Metropolitano de Medellín (Colombia))

  • Trespalacios Carrasquilla, Alfredo

    (Instituto Tecnológico Metropolitano de Medellín (Colombia))

  • Jiménez Echeverri, Edwin Andrés

    (Instituto Tecnológico Metropolitano de Medellín (Colombia))

Abstract

Los modelos de tipo Credit Score permiten a los analistas de crédito la cuantificación de los riesgos que implican las operaciones de crédito, la segmentación de afiliados y la recomendación de decisiones de otorgamiento o rechazo de un crédito para personas naturales. Estos modelos buscan entregar la información necesaria para inferir sobre las probabilidades de impago de un afiliado, mediante la aplicación de técnicas paramétricas o no paramétricas. En este trabajo se busca identificar cuáles de los siguientes modelos pueden ser más apropiados para medir el riesgo de crédito de personas naturales en una caja de compensación familiar ubicada en Colombia: Logit, Probit, Redes Neuronales o Linear Support-Vector Machine. Los resultados obtenidos muestran que, si bien los Linear Support Vector Machine pueden tener mejor desempeño, los modelos Probit-Stepwise son igualmente útiles y tienen como ventaja la posibilidad de interpretar los parámetros calibrados.

Suggested Citation

  • Rodríguez Guevara, David Esteban & Rendón García, Juan Fernando & Trespalacios Carrasquilla, Alfredo & Jiménez Echeverri, Edwin Andrés, 2022. "Modelación de riesgo de crédito de personas naturales. Un caso aplicado a una caja de compensación familiar colombiana [Natural People Credit Risk Modeling. An applied case in a Colombian Family Be," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 33(1), pages 29-48, June.
  • Handle: RePEc:pab:rmcpee:v:33:y:2022:i:1:p:29-48
    DOI: https://doi.org/10.46661/revmetodoscuanteconempresa.5146
    as

    Download full text from publisher

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/5146/5390
    Download Restriction: no

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/5146
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.46661/revmetodoscuanteconempresa.5146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Apilado, Vincent P. & Warner, Don C. & Dauten, Joel J., 1974. "Evaluative Techniques in Consumer Finance—Experimental Results and Policy Implications for Financial Institutions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 9(2), pages 275-283, March.
    2. Altman, Edward I., 1980. "Commercial Bank Lending: Process, Credit Scoring, and Costs of Errors in Lending," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(4), pages 813-832, November.
    3. Ligang Zhou & Kin Keung Lai & Jerome Yen, 2009. "Credit Scoring Models With Auc Maximization Based On Weighted Svm," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 677-696.
    4. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    5. Huaming Zhai & Jeffrey Russell, 1999. "Stochastic modelling and prediction of contractor default risk," Construction Management and Economics, Taylor & Francis Journals, vol. 17(5), pages 563-576.
    6. Ochoa P., Juan Camilo & Galeano M., Wilinton & Agudelo V., Luis Gabriel, 2010. "Construcción de un modelo de scoring para el otorgamiento de crédito en una entidad financiera," Perfil de Coyuntura Económica, Universidad de Antioquia, CIE, November.
    7. Rayo Cantón, Salvador & Lara Rubio, Juan & Camino Blasco, David, 2010. "A Credit Scoring Model For Institutions Of Microfinance Under The Basel Ii Normative," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 15(28), pages 89-124.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raffaele Manini & Oriol Amat, 2018. "Credit scoring for the supermarket and retailing industry: analysis and application proposal," Economics Working Papers 1614, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Doruk Şen & Cem Çağrı Dönmez & Umman Mahir Yıldırım, 2020. "A Hybrid Bi-level Metaheuristic for Credit Scoring," Information Systems Frontiers, Springer, vol. 22(5), pages 1009-1019, October.
    3. Evžen Kocenda & Martin Vojtek, 2011. "Default Predictors in Retail Credit Scoring: Evidence from Czech Banking Data," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(6), pages 80-98, November.
    4. Hossein Rezayi Dolatabadi & Avaz Yari & Fatemeh Faghani & Ali Akbar Abedi Sharabiany & Mohammad Hossein Forghani & Mohammad Kazem Emadzadeh, 2013. "Prioritizing of Credit Ranking Criterions of Isfahan State banks' Costumers by Using AHP Fuzzy Method," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 3(1), pages 303-313, January.
    5. Antonio Blanco-Oliver & Ana Irimia-Dieguez & María Oliver-Alfonso & Nicholas Wilson, 2015. "Systemic Sovereign Risk and Asset Prices: Evidence from the CDS Market, Stressed European Economies and Nonlinear Causality Tests," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(2), pages 144-166, April.
    6. Doruk Şen & Cem Çağrı Dönmez & Umman Mahir Yıldırım, 0. "A Hybrid Bi-level Metaheuristic for Credit Scoring," Information Systems Frontiers, Springer, vol. 0, pages 1-11.
    7. Fabián Enrique Salazar Villano, 2013. "Cuantificación del riesgo de incumplimiento en créditos de libre inversión: un ejercicio econométrico para una entidad bancaria del municipio de Popayán, Colombia," Estudios Gerenciales, Universidad Icesi, December.
    8. José Willer Prado & Valderí Castro Alcântara & Francisval Melo Carvalho & Kelly Carvalho Vieira & Luiz Kennedy Cruz Machado & Dany Flávio Tonelli, 2016. "Multivariate analysis of credit risk and bankruptcy research data: a bibliometric study involving different knowledge fields (1968–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1007-1029, March.
    9. DeVaney, Sharon A. & Lytton, Ruth H., 1995. "Household insolvency: A review of household debt repayment, delinquency, and bankruptcy," Financial Services Review, Elsevier, vol. 4(2), pages 137-156.
    10. Piesse, J. & Wood, D., 1992. "Issues in assessing MDA models of corporate failure: A research note," The British Accounting Review, Elsevier, vol. 24(1), pages 33-42.
    11. Barbara Su, 2023. "Banking practices and borrowing firms’ financial reporting quality: evidence from bank cross-selling," Review of Accounting Studies, Springer, vol. 28(1), pages 201-236, March.
    12. Shaikh, Ibrahim A. & O'Brien, Jonathan Paul & Peters, Lois, 2018. "Inside directors and the underinvestment of financial slack towards R&D-intensity in high-technology firms," Journal of Business Research, Elsevier, vol. 82(C), pages 192-201.
    13. Mikel Bedayo & Gabriel Jiménez & José-Luis Peydró & Raquel Vegas, 2020. "Screening and Loan Origination Time: Lending Standards, Loan Defaults and Bank Failures," Working Papers 1215, Barcelona School of Economics.
    14. Ruey-Ching Hwang, 2013. "Forecasting credit ratings with the varying-coefficient model," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1947-1965, December.
    15. Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
    16. Masahiro Enomoto, 2018. "Effects of Corporate Governance on the Relationship between Accounting Quality and Trade Credit: Evidence from Japan," Discussion Paper Series DP2018-12, Research Institute for Economics & Business Administration, Kobe University, revised Dec 2023.
    17. Knyazeva, Anzhela & Knyazeva, Diana, 2012. "Does being your bank’s neighbor matter?," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1194-1209.
    18. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    19. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    20. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).

    More about this item

    Keywords

    riesgo de crédito; Logit; Probit; red neuronal; support vector machine; Credit Risk; Logit Model; Probit Model; Neural Network;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:33:y:2022:i:1:p:29-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.