IDEAS home Printed from https://ideas.repec.org/a/wsi/ijitdm/v08y2009i04ns0219622009003582.html
   My bibliography  Save this article

Credit Scoring Models With Auc Maximization Based On Weighted Svm

Author

Listed:
  • LIGANG ZHOU

    (Department of Management Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong)

  • KIN KEUNG LAI

    (Department of Management Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong)

  • JEROME YEN

    (Department of Finance, Hong Kong University of Science and Technology, Hong Kong)

Abstract

Credit scoring models are very important tools for financial institutions to make credit granting decisions. In the last few decades, many quantitative methods have been used for the development of credit scoring models with focus on maximizing classification accuracy. This paper proposes the credit scoring models with the area under receiver operating characteristics curve (AUC) maximization based on the new emerged support vector machines (SVM) techniques. Three main SVM models with different features weighted strategies are discussed. The weighted SVM credit scoring models are tested using 10-fold cross validation with two real world data sets and the experimental results are compared with other six traditional methods including linear regression, logistic regression,knearest neighbor, decision tree, and neural network. Results demonstrate that weighted 2-norm SVM with radial basis function (RBF) kernel function andt-test feature weighting strategy has the overall better performance with very narrow margin than other SVM models. However, it also consumes more computational time. In considering the balance of performance and time, least squares support vector machines (LSSVM) with RBF kernel maybe a better choice for large scale credit scoring applications.

Suggested Citation

  • Ligang Zhou & Kin Keung Lai & Jerome Yen, 2009. "Credit Scoring Models With Auc Maximization Based On Weighted Svm," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 677-696.
  • Handle: RePEc:wsi:ijitdm:v:08:y:2009:i:04:n:s0219622009003582
    DOI: 10.1142/S0219622009003582
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219622009003582
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219622009003582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Lean & Yao, Xiao & Zhang, Xiaoming & Yin, Hang & Liu, Jia, 2020. "A novel dual-weighted fuzzy proximal support vector machine with application to credit risk analysis," International Review of Financial Analysis, Elsevier, vol. 71(C).
    2. Zhang, Hao & Shi, Yuxin & Yang, Xueran & Zhou, Ruiling, 2021. "A firefly algorithm modified support vector machine for the credit risk assessment of supply chain finance," Research in International Business and Finance, Elsevier, vol. 58(C).
    3. Raffaele Manini & Oriol Amat, 2018. "Credit scoring for the supermarket and retailing industry: analysis and application proposal," Economics Working Papers 1614, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Doruk Şen & Cem Çağrı Dönmez & Umman Mahir Yıldırım, 2020. "A Hybrid Bi-level Metaheuristic for Credit Scoring," Information Systems Frontiers, Springer, vol. 22(5), pages 1009-1019, October.
    5. José Willer Prado & Valderí Castro Alcântara & Francisval Melo Carvalho & Kelly Carvalho Vieira & Luiz Kennedy Cruz Machado & Dany Flávio Tonelli, 2016. "Multivariate analysis of credit risk and bankruptcy research data: a bibliometric study involving different knowledge fields (1968–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1007-1029, March.
    6. Zieba, Maciej & Härdle, Wolfgang Karl, 2016. "Beta-boosted ensemble for big credit scoring data," SFB 649 Discussion Papers 2016-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. repec:hum:wpaper:sfb649dp2016-052 is not listed on IDEAS
    8. Gao, Zheming & Fang, Shu-Cherng & Luo, Jian & Medhin, Negash, 2021. "A kernel-free double well potential support vector machine with applications," European Journal of Operational Research, Elsevier, vol. 290(1), pages 248-262.
    9. Doruk Şen & Cem Çağrı Dönmez & Umman Mahir Yıldırım, 0. "A Hybrid Bi-level Metaheuristic for Credit Scoring," Information Systems Frontiers, Springer, vol. 0, pages 1-11.
    10. Rodríguez Guevara, David Esteban & Rendón García, Juan Fernando & Trespalacios Carrasquilla, Alfredo & Jiménez Echeverri, Edwin Andrés, 2022. "Modelación de riesgo de crédito de personas naturales. Un caso aplicado a una caja de compensación familiar colombiana [Natural People Credit Risk Modeling. An applied case in a Colombian Family Be," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 33(1), pages 29-48, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijitdm:v:08:y:2009:i:04:n:s0219622009003582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijitdm/ijitdm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.