IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v18y2014i1p146-162.html
   My bibliography  Save this article

On Modelling Insurance Data by Using a Generalized Lognormal Distribution || Sobre la modelización de datos de seguros usando una distribución lognormal generalizada

Author

Listed:
  • García, Victoriano J.

    (Departamento de Estadística e Investigación Operativa, Universidad de Cádiz (España))

  • Gómez-Déniz, Emilio

    (Departamento de Métodos Cuantitativos e Instituto TiDES, Universidad de Las Palmas de Gran Canaria (España))

  • Vázquez-Polo, Francisco J.

    (Departamento de Métodos Cuantitativos e Instituto TiDES, Universidad de Las Palmas de Gran Canaria (España))

Abstract

In this paper, a new heavy-tailed distribution is used to model data with a strong right tail, as often occurs in practical situations. The distribution proposed is derived from the lognormal distribution, by using the Marshall and Olkin procedure. Some basic properties of this new distribution are obtained and we present situations where this new distribution correctly reflects the sample behaviour for the right tail probability. An application of the model to dental insurance data is presented and analysed in depth. We conclude that the generalized lognormal distribution proposed is a distribution that should be taken into account among other possible distributions for insurance data in which the properties of a heavy-tailed distribution are present. || Presentamos una nueva distribución lognormal con colas pesadas que se adapta bien a muchas situaciones prácticas en el campo de los seguros. Utilizamos el procedimiento de Marshall y Olkin para generar tal distribución y estudiamos sus propiedades básicas. Se presenta una aplicación de la misma para datos de seguros dentales que es analizada en profundidad, concluyendo que tal distribución deberá formar parte del catálogo de distribuciones a tener cuenta para la modernización de datos en seguros cuando hay presencia de colas pesadas.

Suggested Citation

  • García, Victoriano J. & Gómez-Déniz, Emilio & Vázquez-Polo, Francisco J., 2014. "On Modelling Insurance Data by Using a Generalized Lognormal Distribution || Sobre la modelización de datos de seguros usando una distribución lognormal generalizada," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 18(1), pages 146-162, December.
  • Handle: RePEc:pab:rmcpee:v:18:y:2014:i:1:p:146-162
    as

    Download full text from publisher

    File URL: http://www.upo.es/RevMetCuant/pdf/vol18/art100.pdf
    Download Restriction: no

    File URL: http://www.upo.es/RevMetCuant/art.php?id=100
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beirlant, J. & Matthys, G. & Dierckx, G., 2001. "Heavy-Tailed Distributions and Rating," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 37-58, May.
    2. Chen, Gemai, 1995. "Generalized log-normal distributions with reliability application," Computational Statistics & Data Analysis, Elsevier, vol. 19(3), pages 309-319, March.
    3. M. E. Ghitany & E. K. Al-Hussaini & R. A. Al-Jarallah, 2005. "Marshall-Olkin extended weibull distribution and its application to censored data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(10), pages 1025-1034.
    4. K. Jose & Shanoja Naik & Miroslav Ristić, 2010. "Marshall–Olkin q-Weibull distribution and max–min processes," Statistical Papers, Springer, vol. 51(4), pages 837-851, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose K. K. & Sivadas Remya, 2015. "Negative Binomial Marshall–Olkin Rayleigh Distribution and Its Applications," Stochastics and Quality Control, De Gruyter, vol. 30(2), pages 89-98, December.
    2. Klein, Ingo, 2012. "Quasi-arithmetische Mittelwerte und Normalverteilung," Discussion Papers 89/2010, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    3. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    4. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    5. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    6. Saralees Nadarajah & Božidar Popović & Miroslav Ristić, 2013. "Compounding: an R package for computing continuous distributions obtained by compounding a continuous and a discrete distribution," Computational Statistics, Springer, vol. 28(3), pages 977-992, June.
    7. Xiang Jia & Saralees Nadarajah & Bo Guo, 2020. "Inference on q-Weibull parameters," Statistical Papers, Springer, vol. 61(2), pages 575-593, April.
    8. Hadeel Klakattawi & Dawlah Alsulami & Mervat Abd Elaal & Sanku Dey & Lamya Baharith, 2022. "A new generalized family of distributions based on combining Marshal-Olkin transformation with T-X family," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-29, February.
    9. Zubair Ahmad, 2020. "The Zubair-G Family of Distributions: Properties and Applications," Annals of Data Science, Springer, vol. 7(2), pages 195-208, June.
    10. Bowen Liu & Malwane M. A. Ananda, 2022. "A Generalized Family of Exponentiated Composite Distributions," Mathematics, MDPI, vol. 10(11), pages 1-18, June.
    11. Devendra Kumar & Neetu Jain & Mazen Nassar & Osama Eraki Abo-Kasem, 2021. "Parameter Estimation for the Exponentiated Kumaraswamy-Power Function Distribution Based on Order Statistics with Application," Annals of Data Science, Springer, vol. 8(4), pages 785-811, December.
    12. Yolanda M. Gómez & Diego I. Gallardo & Carolina Marchant & Luis Sánchez & Marcelo Bourguignon, 2023. "An In-Depth Review of the Weibull Model with a Focus on Various Parameterizations," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    13. Necir, Abdelhakim & Meraghni, Djamel, 2009. "Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 49-58, August.
    14. Rocha, Ricardo & Nadarajah, Saralees & Tomazella, Vera & Louzada, Francisco, 2017. "A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 48-63.
    15. Fiaz Ahmad Bhatti & G. G. Hamedani & Mustafa C. Korkmaz & Gauss M. Cordeiro & Haitham M. Yousof & Munir Ahmad, 2019. "On Burr III Marshal Olkin family: development, properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-21, December.
    16. Tingguo Zheng & Tao Song, 2014. "A Realized Stochastic Volatility Model With Box-Cox Transformation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 593-605, October.
    17. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    18. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    19. Debasis Kundu, 2021. "Stationary GE-Process and its Application in Analyzing Gold Price Data," Papers 2201.02568, arXiv.org.
    20. Mehdi Basikhasteh & Iman Makhdoom, 2022. "Bayesian inference of bivariate Weibull geometric model based on LINEX and quadratic loss functions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 867-880, April.

    More about this item

    Keywords

    heavy-tailed; insurance; lognormal distribution; loss distribution; seguros; distribución lognormal; función de pérdidas; colas pesadas;
    All these keywords.

    JEL classification:

    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:18:y:2014:i:1:p:146-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.