IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v31y2001i01p37-58_00.html
   My bibliography  Save this article

Heavy-Tailed Distributions and Rating

Author

Listed:
  • Beirlant, J.
  • Matthys, G.
  • Dierckx, G.

Abstract

In this paper we consider the problem raised in the Astin Bulletin (1999) by Prof. Benktander at the occasion of his 80th birthday concerning the choice of an appropriate claim size distribution in connection with reinsurance rating problems. Appropriate models for large claim distributions play a central role in this matter. We review the literature on extreme value methodology and consider its use in reinsurance. Whereas the models in extreme-value methods are non-parametric or semi-parametric of nature, practitioners often need a fully parametric model for assessing a portfolio risk both in the tails and in more central portions of the claim distribution. To this end we propose a parametric model, termed the generalised Burr-gamma distribution, which possesses such flexibility. Throughout we consider a Norwegian fire insurance portfolio data set in order to illustrate the concepts. A small sample simulation study is performed to validate the different methods for estimating excess-of-loss reinsurance premiums.

Suggested Citation

  • Beirlant, J. & Matthys, G. & Dierckx, G., 2001. "Heavy-Tailed Distributions and Rating," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 37-58, May.
  • Handle: RePEc:cup:astinb:v:31:y:2001:i:01:p:37-58_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100001525/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    2. Albrecht, Peter & Schwake, Edmund & Winter, Peter, 2007. "Quantifizierung operationeller Risiken: Der Loss Distribution Approach," German Risk and Insurance Review (GRIR), University of Cologne, Department of Risk Management and Insurance, vol. 3(1), pages 1-45.
    3. Vandewalle, B. & Beirlant, J., 2006. "On univariate extreme value statistics and the estimation of reinsurance premiums," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 441-459, June.
    4. Wei Zhao & Saima K Khosa & Zubair Ahmad & Muhammad Aslam & Ahmed Z Afify, 2020. "Type-I heavy tailed family with applications in medicine, engineering and insurance," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
    5. Rassoul, Abdelaziz, 2013. "Kernel-type estimator of the conditional tail expectation for a heavy-tailed distribution," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 698-703.
    6. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    7. Benkhelifa, Lazhar, 2014. "Kernel-type estimator of the reinsurance premium for heavy-tailed loss distributions," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 65-70.
    8. García, Victoriano J. & Gómez-Déniz, Emilio & Vázquez-Polo, Francisco J., 2014. "On Modelling Insurance Data by Using a Generalized Lognormal Distribution || Sobre la modelización de datos de seguros usando una distribución lognormal generalizada," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 18(1), pages 146-162, December.
    9. Neves, Claudia & Fraga Alves, M. I., 2004. "Reiss and Thomas' automatic selection of the number of extremes," Computational Statistics & Data Analysis, Elsevier, vol. 47(4), pages 689-704, November.
    10. Goegebeur, Yuri & Guillou, Armelle & Qin, Jing, 2021. "Extreme value estimation of the conditional risk premium in reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 68-80.
    11. Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2023. "Integrating flexibility in open pit mine planning to survive commodity price decline," Resources Policy, Elsevier, vol. 81(C).
    12. Necir, Abdelhakim & Meraghni, Djamel, 2009. "Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 49-58, August.
    13. Bowen Liu & Malwane M. A. Ananda, 2022. "A Generalized Family of Exponentiated Composite Distributions," Mathematics, MDPI, vol. 10(11), pages 1-18, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:31:y:2001:i:01:p:37-58_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.