IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v51y2010i4p837-851.html
   My bibliography  Save this article

Marshall–Olkin q-Weibull distribution and max–min processes

Author

Listed:
  • K. Jose
  • Shanoja Naik
  • Miroslav Ristić

Abstract

No abstract is available for this item.

Suggested Citation

  • K. Jose & Shanoja Naik & Miroslav Ristić, 2010. "Marshall–Olkin q-Weibull distribution and max–min processes," Statistical Papers, Springer, vol. 51(4), pages 837-851, December.
  • Handle: RePEc:spr:stpapr:v:51:y:2010:i:4:p:837-851
    DOI: 10.1007/s00362-008-0173-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-008-0173-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-008-0173-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costa, U.M.S. & Freire, V.N. & Malacarne, L.C. & Mendes, R.S. & Picoli Jr., S. & de Vasconcelos, E.A. & da Silva Jr., E.F., 2006. "An improved description of the dielectric breakdown in oxides based on a generalized Weibull distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 209-215.
    2. Beck, Christian, 2006. "Stretched exponentials from superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(1), pages 96-101.
    3. Picoli, S. & Mendes, R.S. & Malacarne, L.C., 2003. "q-exponential, Weibull, and q-Weibull distributions: an empirical analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 678-688.
    4. Alice Thomas & K.K. Jose, 2004. "Bivariate semi-Pareto minification processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 59(3), pages 305-313, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Narayanaswamy Balakrishnan & Ghobad Barmalzan & Abedin Haidari, 2018. "Ordering Results for Order Statistics from Two Heterogeneous Marshall-Olkin Generalized Exponential Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 292-304, November.
    2. Xiang Jia & Saralees Nadarajah & Bo Guo, 2020. "Inference on q-Weibull parameters," Statistical Papers, Springer, vol. 61(2), pages 575-593, April.
    3. García, Victoriano J. & Gómez-Déniz, Emilio & Vázquez-Polo, Francisco J., 2014. "On Modelling Insurance Data by Using a Generalized Lognormal Distribution || Sobre la modelización de datos de seguros usando una distribución lognormal generalizada," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 18(1), pages 146-162, December.
    4. Fiaz Ahmad Bhatti & G. G. Hamedani & Mustafa C. Korkmaz & Gauss M. Cordeiro & Haitham M. Yousof & Munir Ahmad, 2019. "On Burr III Marshal Olkin family: development, properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-21, December.
    5. Debasis Kundu, 2021. "Stationary GE-Process and its Application in Analyzing Gold Price Data," Papers 2201.02568, arXiv.org.
    6. Jose K. K. & Sivadas Remya, 2015. "Negative Binomial Marshall–Olkin Rayleigh Distribution and Its Applications," Stochastics and Quality Control, De Gruyter, vol. 30(2), pages 89-98, December.
    7. Isidro Jesús González-Hernández & Rafael Granillo-Macías & Carlos Rondero-Guerrero & Isaías Simón-Marmolejo, 2021. "Marshall-Olkin distributions: a bibliometric study," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9005-9029, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose, K.K. & Naik, Shanoja R., 2008. "A class of asymmetric pathway distributions and an entropy interpretation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(28), pages 6943-6951.
    2. Xiang Jia & Saralees Nadarajah & Bo Guo, 2020. "Inference on q-Weibull parameters," Statistical Papers, Springer, vol. 61(2), pages 575-593, April.
    3. Xu, Meng & Droguett, Enrique López & Lins, Isis Didier & das Chagas Moura, Márcio, 2017. "On the q-Weibull distribution for reliability applications: An adaptive hybrid artificial bee colony algorithm for parameter estimation," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 93-105.
    4. Nadarajah, Saralees & Kotz, Samuel, 2007. "On the q-type distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 465-468.
    5. Lubashevsky, Ihor & Friedrich, Rudolf & Heuer, Andreas & Ushakov, Andrey, 2009. "Generalized superstatistics of nonequilibrium Markovian systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4535-4550.
    6. Gu, Gao-Feng & Ren, Fei & Ni, Xiao-Hui & Chen, Wei & Zhou, Wei-Xing, 2010. "Empirical regularities of opening call auction in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(2), pages 278-286.
    7. Han, Jung Hun, 2013. "Gamma function to Beck–Cohen superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4288-4298.
    8. Brownlee, R.A. & Gorban, A.N. & Levesley, J., 2008. "Nonequilibrium entropy limiters in lattice Boltzmann methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 385-406.
    9. Zhang, Fode & Ng, Hon Keung Tony & Shi, Yimin, 2018. "On alternative q-Weibull and q-extreme value distributions: Properties and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1171-1190.
    10. Yusuke Uchiyama & Takanori Kadoya, 2018. "Superstatistics with cut-off tails for financial time series," Papers 1809.04775, arXiv.org.
    11. Sánchez, Ewin, 2019. "Burr type-XII as a superstatistical stationary distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 443-446.
    12. Martín-González, Juan Manuel & de Saá Guerra, Yves & García-Manso, Juan Manuel & Arriaza, Enrique & Valverde-Estévez, Teresa, 2016. "The Poisson model limits in NBA basketball: Complexity in team sports," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 182-190.
    13. Yeh, Hsiaw-Chan, 2009. "Multivariate semi-Weibull distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1634-1644, September.
    14. Y. Malevergne & V. F. Pisarenko & D. Sornette, 2003. "Empirical Distributions of Log-Returns: between the Stretched Exponential and the Power Law?," Papers physics/0305089, arXiv.org.
    15. dos Santos, Maike A.F., 2019. "Analytic approaches of the anomalous diffusion: A review," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 86-96.
    16. D. Cifarelli & R. Gupta & K. Jayakumar, 2010. "On generalized semi-Pareto and semi-Burr distributions and random coefficient minification processes," Statistical Papers, Springer, vol. 51(1), pages 193-208, January.
    17. Mathai, A.M. & Haubold, H.J., 2007. "On generalized entropy measures and pathways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 493-500.
    18. Mathai, A.M. & Provost, Serge B., 2013. "Generalized Boltzmann factors induced by Weibull-type distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 545-551.
    19. Dhannya Joseph, 2011. "Gamma distribution and extensions by using pathway idea," Statistical Papers, Springer, vol. 52(2), pages 309-325, May.
    20. Mathai, A.M. & Haubold, H.J., 2007. "Pathway model, superstatistics, Tsallis statistics, and a generalized measure of entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 110-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:51:y:2010:i:4:p:837-851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.