IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v7y2020i2d10.1007_s40745-018-0169-9.html
   My bibliography  Save this article

The Zubair-G Family of Distributions: Properties and Applications

Author

Listed:
  • Zubair Ahmad

    (Quaid-i-Azam University 45320)

Abstract

In this article, a new method is suggested to expand a family of life distributions by adding an additional parameter. The new proposal may be named as the Zubair-G family of distributions. For this family, general expressions for some mathematical properties are derived. The maximum product spacing, ordinary least square and maximum likelihood methods are discussed to estimate the model parameters. A three-parameter special sub-model of the proposed family, called the Zubair–Weibull distribution is considered in detail. Its density function can be symmetrical, left-skewed, right-skewed, and has increasing, decreasing, bathtub and upside-down bathtub shaped failure rates. To illustrate the importance of the proposed family over the other well-known methods, two applications to real data sets are analyzed.

Suggested Citation

  • Zubair Ahmad, 2020. "The Zubair-G Family of Distributions: Properties and Applications," Annals of Data Science, Springer, vol. 7(2), pages 195-208, June.
  • Handle: RePEc:spr:aodasc:v:7:y:2020:i:2:d:10.1007_s40745-018-0169-9
    DOI: 10.1007/s40745-018-0169-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-018-0169-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-018-0169-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nadarajah, Saralees & Gupta, Arjun K., 2007. "A generalized gamma distribution with application to drought data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 74(1), pages 1-7.
    2. M. E. Ghitany & E. K. Al-Hussaini & R. A. Al-Jarallah, 2005. "Marshall-Olkin extended weibull distribution and its application to censored data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(10), pages 1025-1034.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    2. Broderick Oluyede & Thatayaone Moakofi, 2022. "Type II Exponentiated Half-Logistic-Gompertz Topp-Leone-G Family of Distributions with Applications," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 14(4), pages 225-262, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    2. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    3. Saralees Nadarajah & Božidar Popović & Miroslav Ristić, 2013. "Compounding: an R package for computing continuous distributions obtained by compounding a continuous and a discrete distribution," Computational Statistics, Springer, vol. 28(3), pages 977-992, June.
    4. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    5. Gauss Cordeiro & Elizabeth Hashimoto & Edwin Ortega & Marcelino Pascoa, 2012. "The McDonald extended distribution: properties and applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 409-433, July.
    6. Hadeel Klakattawi & Dawlah Alsulami & Mervat Abd Elaal & Sanku Dey & Lamya Baharith, 2022. "A new generalized family of distributions based on combining Marshal-Olkin transformation with T-X family," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-29, February.
    7. Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
    8. Devendra Kumar & Neetu Jain & Mazen Nassar & Osama Eraki Abo-Kasem, 2021. "Parameter Estimation for the Exponentiated Kumaraswamy-Power Function Distribution Based on Order Statistics with Application," Annals of Data Science, Springer, vol. 8(4), pages 785-811, December.
    9. Yolanda M. Gómez & Diego I. Gallardo & Carolina Marchant & Luis Sánchez & Marcelo Bourguignon, 2023. "An In-Depth Review of the Weibull Model with a Focus on Various Parameterizations," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    10. Jose K. K. & Sivadas Remya, 2015. "Negative Binomial Marshall–Olkin Rayleigh Distribution and Its Applications," Stochastics and Quality Control, De Gruyter, vol. 30(2), pages 89-98, December.
    11. Rocha, Ricardo & Nadarajah, Saralees & Tomazella, Vera & Louzada, Francisco, 2017. "A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 48-63.
    12. Altemir Silva Braga & Gauss M. Cordeiro & Edwin M. M. Ortega & Giovana O. Silva, 2017. "The Odd Log-Logistic Student t Distribution: Theory and Applications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 615-639, December.
    13. Zubair Ahmad, 2020. "A New Generalized Class of Distributions: Properties and Estimation Based on Type-I Censored Samples," Annals of Data Science, Springer, vol. 7(2), pages 243-256, June.
    14. Aryal Gokarna R. & Yousof Haitham M., 2017. "The Exponentiated Generalized-G Poisson Family of Distributions," Stochastics and Quality Control, De Gruyter, vol. 32(1), pages 7-23, June.
    15. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    16. Kiche J & Oscar Ngesa & George Orwa, 2019. "On Generalized Gamma Distribution and Its Application to Survival Data," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(5), pages 85-102, September.
    17. Mehdi Basikhasteh & Iman Makhdoom, 2022. "Bayesian inference of bivariate Weibull geometric model based on LINEX and quadratic loss functions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 867-880, April.
    18. Gupta, Ramesh C. & Lvin, Sergey & Peng, Cheng, 2010. "Estimating turning points of the failure rate of the extended Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 924-934, April.
    19. Nadarajah, Saralees & Rocha, Ricardo, 2016. "Newdistns: An R Package for New Families of Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i10).
    20. Abukari Abdul-Lateef & Amadu Yakubu & Shei Baba Sayibu, 2024. "On the Topp-Leone Generalized Power Weibull Distribution: Properties, Applications and Regression," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 13(2), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:7:y:2020:i:2:d:10.1007_s40745-018-0169-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.