IDEAS home Printed from https://ideas.repec.org/a/oup/revfin/v22y2018i1p381-418..html
   My bibliography  Save this article

Futures Trading and the Excess Co-movement of Commodity Prices
[On the comovement of commodity prices]

Author

Listed:
  • Yannick Le Pen
  • Benoît Sévi

Abstract

We empirically reinvestigate the issue of the excess co-movement of commodity prices initially raised in Pindyck and Rotemberg (1990). Excess co-movement appears when commodity prices remain correlated even after adjusting for the impact of fundamentals. We use recent developments in large approximate factor models to consider a richer information set and adequately model these fundamentals. We consider a set of eight unrelated commodities along with 184 real and nominal macroeconomic variables, from developed and emerging economies, from which nine factors are extracted over the 1993–2013 period. Our estimates provide evidence of time-varying excess co-movement which is particularly high after 2007. We further show that speculative intensity is a driver of the estimated excess co-movement, as speculative trading is both correlated across the commodity futures markets and correlated with the futures prices. Our results can be taken as direct evidence of the significant impact of financialization on commodity-price cross-moments.

Suggested Citation

  • Yannick Le Pen & Benoît Sévi, 2018. "Futures Trading and the Excess Co-movement of Commodity Prices [On the comovement of commodity prices]," Review of Finance, European Finance Association, vol. 22(1), pages 381-418.
  • Handle: RePEc:oup:revfin:v:22:y:2018:i:1:p:381-418.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/rof/rfx039
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    3. Chunrong Ai & Arjun Chatrath & Frank Song, 2006. "On the Comovement of Commodity Prices," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 574-588.
    4. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    5. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tom Dudda & Tony Klein & Duc Khuong Nguyen & Thomas Walther, 2022. "Common Drivers of Commodity Futures?," Working Papers 2207, Utrecht School of Economics.
    2. Aka Messouma Catherine & Wawa Zadi Yann & Aka Joseph, 2024. "The Evolution and Profitability of China's Futures Markets: A Comprehensive Review," International Journal of Science and Business, IJSAB International, vol. 34(1), pages 132-143.
    3. Bohl, Martin T. & Irwin, Scott H. & Pütz, Alexander & Sulewski, Christoph, 2023. "The impact of financialization on the efficiency of commodity futures markets," Journal of Commodity Markets, Elsevier, vol. 31(C).
    4. Banerjee, Ameet Kumar & Sensoy, Ahmet & Goodell, John W. & Mahapatra, Biplab, 2024. "Impact of media hype and fake news on commodity futures prices: A deep learning approach over the COVID-19 period," Finance Research Letters, Elsevier, vol. 59(C).
    5. Abricha, Amal & Ben Amar, Amine & Bellalah, Makram, 2024. "Commodity futures markets under stress and stress-free periods: Further insights from a quantile connectedness approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 93(C), pages 229-246.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ipg:wpaper:19 is not listed on IDEAS
    2. Yannick Le Pen & Benoît Sévi, 2013. "Futures Trading and the Excess Comovement of Commodity Prices," Working Papers halshs-00793724, HAL.
    3. repec:ipg:wpaper:2013-019 is not listed on IDEAS
    4. repec:dau:papers:123456789/11382 is not listed on IDEAS
    5. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    6. Luke Hartigan & James Morley, 2020. "A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 271-293, September.
    7. Reese, Simon, 2015. "Asymptotic Inference in the Lee-Carter Model for Modelling Mortality Rates," Working Papers 2015:16, Lund University, Department of Economics.
    8. Jiahe Lin & George Michailidis, 2019. "Approximate Factor Models with Strongly Correlated Idiosyncratic Errors," Papers 1912.04123, arXiv.org.
    9. Yunus Emre Ergemen & Carlos Vladimir Rodríguez-Caballero, 2016. "A Dynamic Multi-Level Factor Model with Long-Range Dependence," CREATES Research Papers 2016-23, Department of Economics and Business Economics, Aarhus University.
    10. James Sampi, 2016. "High Dimensional Factor Models: An Empirical Bayes Approach," Working Papers 75, Peruvian Economic Association.
    11. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    12. Jacobs, Jan P.A.M. & Otter, Pieter W. & den Reijer, Ard H.J., 2012. "Information, data dimension and factor structure," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 80-91.
    13. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    14. repec:dau:papers:123456789/11663 is not listed on IDEAS
    15. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    16. Boysen-Hogrefe, Jens & Pape, Markus, 2011. "More than just one labor market cycle in Germany? : an analysis of regional unemployment data," Zeitschrift für ArbeitsmarktForschung - Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 44(3), pages 279-292.
    17. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    18. Chen, Liang & Ramos Ramirez, Andrey David, 2013. "Revisiting Granger Causality of CO2 on Global Warming: a Quantile Factor Approach," DES - Working Papers. Statistics and Econometrics. WS 35531, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Kaufmann, Daniel & Scheufele, Rolf, 2017. "Business tendency surveys and macroeconomic fluctuations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 878-893.
    20. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    21. Shi, Wei & Lee, Lung-fei, 2017. "Spatial dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 197(2), pages 323-347.
    22. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
    23. Djogbenou, Antoine & Sufana, Razvan, 2024. "Tests for group-specific heterogeneity in high-dimensional factor models," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    24. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:revfin:v:22:y:2018:i:1:p:381-418.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/eufaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.