Sparse Weighted-Norm Minimum Variance Portfolios
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015.
"Risks of large portfolios,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2013. "Risks of large portfolios," MPRA Paper 44206, University Library of Munich, Germany.
- Jianqing Fan & Yuan Liao & Xiaofeng Shi, 2013. "Risks of Large Portfolios," Papers 1302.0926, arXiv.org.
- B. Fastrich & S. Paterlini & P. Winker, 2015. "Constructing optimal sparse portfolios using regularization methods," Computational Management Science, Springer, vol. 12(3), pages 417-434, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dai, Zhifeng & Wen, Fenghua, 2018. "Some improved sparse and stable portfolio optimization problems," Finance Research Letters, Elsevier, vol. 27(C), pages 46-52.
- Zhifeng Dai & Jie Kang, 2022. "Some new efficient mean–variance portfolio selection models," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4784-4796, October.
- Tu, Xueyong & Li, Bin, 2024. "Robust portfolio selection with smart return prediction," Economic Modelling, Elsevier, vol. 135(C).
- Lassance, Nathan & Vanderveken, Rodolphe & Vrins, Frédéric, 2022. "On the optimal combination of naive and mean-variance portfolio strategies," LIDAM Discussion Papers LFIN 2022006, Université catholique de Louvain, Louvain Finance (LFIN).
- Chou, Ray Yeutien & Yen, Tso-Jung & Yen, Yu-Min, 2017. "Risk evaluations with robust approximate factor models," Journal of Banking & Finance, Elsevier, vol. 82(C), pages 244-264.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018.
"Asset allocation strategies based on penalized quantile regression,"
Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2015. "Asset Allocation Strategies Based on Penalized Quantile Regression," Papers 1507.00250, arXiv.org.
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2015. "Asset Allocation Strategies Based On Penalized Quantile Regression," "Marco Fanno" Working Papers 0199, Dipartimento di Scienze Economiche "Marco Fanno".
- David Neděla & Sergio Ortobelli & Tomáš Tichý, 2024. "Mean–variance vs trend–risk portfolio selection," Review of Managerial Science, Springer, vol. 18(7), pages 2047-2078, July.
- Christian M. Hafner & Oliver Linton & Haihan Tang, 2016. "Estimation of a multiplicative covariance structure in the large dimensional case," CeMMAP working papers 52/16, Institute for Fiscal Studies.
- Matteo Barigozzi & Marc Hallin, 2016.
"Generalized dynamic factor models and volatilities: recovering the market volatility shocks,"
Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
- Matteo Barigozzi & Marc Hallin, 2014. "Generalized Dynamic Factor Models and Volatilities. Recovering the Market Volatility Shocks," Working Papers ECARES ECARES 2014-52, ULB -- Universite Libre de Bruxelles.
- Barigozzi, Matteo & Hallin, Mark, 2015. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," LSE Research Online Documents on Economics 60980, London School of Economics and Political Science, LSE Library.
- Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
- HAFNER, Christian & LINTON, Oliver B. & TANG, Haihan, 2016.
"Estimation of a Multiplicative Covariance Structure in the Large Dimensional Case,"
LIDAM Discussion Papers CORE
2016044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hafner, C. M. & Linton, O., 2016. "Estimation of a Multiplicative Covariance Structure in the Large Dimensional Case," Cambridge Working Papers in Economics 1664, Faculty of Economics, University of Cambridge.
- Christian M. Hafner & Oliver Linton & Haihan Tang, 2016. "Estimation of a multiplicative covariance structure in the large dimensional case," CeMMAP working papers CWP52/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hiraki, Kazuhiro & Sun, Chuanping, 2022. "A toolkit for exploiting contemporaneous stock correlations," Journal of Empirical Finance, Elsevier, vol. 65(C), pages 99-124.
- Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
- Li, Kunpeng & Li, Qi & Lu, Lina, 2018.
"Quasi maximum likelihood analysis of high dimensional constrained factor models,"
Journal of Econometrics, Elsevier, vol. 206(2), pages 574-612.
- Li, Kunpeng & Li, Qi & Lu, Lina, 2016. "Quasi Maximum Likelihood Analysis of High Dimensional Constrained Factor Models," MPRA Paper 75676, University Library of Munich, Germany.
- Kunpeng Li & Qi Li & Lina Lu, 2018. "Quasi Maximum Likelihood Analysis of High Dimensional Constrained Factor Models," Supervisory Research and Analysis Working Papers RPA 18-2, Federal Reserve Bank of Boston.
- Jyotirmayee Behera & Pankaj Kumar, 2024. "Implementation of machine learning in $$\ell _{\infty }$$ ℓ ∞ -based sparse Sharpe ratio portfolio optimization: a case study on Indian stock market," Operational Research, Springer, vol. 24(4), pages 1-26, December.
- Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024.
"Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem,"
Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
- Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean-Variance Efficient Large Portfolios : A Simple Machine Learning Heuristic Technique based on the Two-Fund Separation Theorem," Post-Print hal-04514343, HAL.
- Barigozzi, Matteo & Hallin, Marc & Luciani, Matteo & Zaffaroni, Paolo, 2024.
"Inferential theory for generalized dynamic factor models,"
Journal of Econometrics, Elsevier, vol. 239(2).
- Matteo Barigozzi & Marc Hallin & Matteo Luciani & Paolo Zaffaroni, 2021. "Inferential Theory for Generalized Dynamic Factor Models," Working Papers ECARES 2021-20, ULB -- Universite Libre de Bruxelles.
- Barigozzi, Matteo & Hallin, Marc, 2017.
"Generalized dynamic factor models and volatilities: estimation and forecasting,"
Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
- Matteo Barigozzi & Marc Hallin, 2015. "Generalized Dynamic Factor Models and Volatilities: Estimation and Forecasting," Working Papers ECARES ECARES 2015-22, ULB -- Universite Libre de Bruxelles.
- Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities estimation and forecasting," LSE Research Online Documents on Economics 67455, London School of Economics and Political Science, LSE Library.
- N. Krejić & E. H. M. Krulikovski & M. Raydan, 2023. "A Low-Cost Alternating Projection Approach for a Continuous Formulation of Convex and Cardinality Constrained Optimization," SN Operations Research Forum, Springer, vol. 4(4), pages 1-24, December.
- Noureddine Kouaissah & Sergio Ortobelli Lozza & Ikram Jebabli, 2022. "Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 833-859, October.
- Christis Katsouris, 2023. "Statistical Estimation for Covariance Structures with Tail Estimates using Nodewise Quantile Predictive Regression Models," Papers 2305.11282, arXiv.org, revised Jul 2023.
- Kouaissah, Noureddine, 2021. "Using multivariate stochastic dominance to enhance portfolio selection and warn of financial crises," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 480-493.
- Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
- N'Golo Kone, 2021. "Efficient mean-variance portfolio selection by double regularization," Working Paper 1453, Economics Department, Queen's University.
- Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:revfin:v:20:y:2016:i:3:p:1259-1287.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/eufaaea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.