IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v27y2022i4p4784-4796.html
   My bibliography  Save this article

Some new efficient mean–variance portfolio selection models

Author

Listed:
  • Zhifeng Dai
  • Jie Kang

Abstract

The poor out‐of‐sample performance of mean–variance portfolio model is mainly caused by estimation errors in the covariance matrix and the mean return, especially the mean return vector. Meanwhile, in financial practice, what most investors actually like is to hold a few stocks in their portfolio. The goal of this paper is to propose some new efficient mean–variance portfolio selection models by considering the following aspects: (i) use the L1‐regularization in objective function to obtain sparse portfolio; (ii) use the shrinkage method of Ledoit and Wolf, Journal of Economics Financial, 2003, 10, 603–621 to estimate the covariance matrix; (iii) use the robust optimization method to mitigate the estimation errors of the expected return. Finally, empirical analysis demonstrates that the proposed strategies have better out‐of‐sample performance.

Suggested Citation

  • Zhifeng Dai & Jie Kang, 2022. "Some new efficient mean–variance portfolio selection models," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4784-4796, October.
  • Handle: RePEc:wly:ijfiec:v:27:y:2022:i:4:p:4784-4796
    DOI: 10.1002/ijfe.2400
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2400
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dai, Zhifeng & Dong, Xiaodi & Kang, Jie & Hong, Lianying, 2020. "Forecasting stock market returns: New technical indicators and two-step economic constraint method," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    2. Dai, Zhifeng & Zhu, Huan, 2020. "Stock return predictability from a mixed model perspective," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
    3. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    4. R.H. Tütüncü & M. Koenig, 2004. "Robust Asset Allocation," Annals of Operations Research, Springer, vol. 132(1), pages 157-187, November.
    5. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    6. B. Fastrich & S. Paterlini & P. Winker, 2015. "Constructing optimal sparse portfolios using regularization methods," Computational Management Science, Springer, vol. 12(3), pages 417-434, July.
    7. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.
    8. Huang, Jinbo & Li, Yong & Yao, Haixiang, 2018. "Index tracking model, downside risk and non-parametric kernel estimation," Journal of Economic Dynamics and Control, Elsevier, vol. 92(C), pages 103-128.
    9. Jianqing Fan & Jingjin Zhang & Ke Yu, 2012. "Vast Portfolio Selection With Gross-Exposure Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 592-606, June.
    10. Jun-Ya Gotoh & Keita Shinozaki & Akiko Takeda, 2013. "Robust portfolio techniques for mitigating the fragility of CVaR minimization and generalization to coherent risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 13(10), pages 1621-1635, October.
    11. Green, Richard C & Hollifield, Burton, 1992. "When Will Mean-Variance Efficient Portfolios Be Well Diversified?," Journal of Finance, American Finance Association, vol. 47(5), pages 1785-1809, December.
    12. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    13. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    14. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    15. Khodamoradi, T. & Salahi, M. & Najafi, A.R., 2020. "Robust CCMV model with short selling and risk-neutral interest rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    16. Dai, Zhifeng & Wen, Fenghua, 2018. "Some improved sparse and stable portfolio optimization problems," Finance Research Letters, Elsevier, vol. 27(C), pages 46-52.
    17. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    18. Ling, Aifan & Sun, Jie & Yang, Xiaoguang, 2014. "Robust tracking error portfolio selection with worst-case downside risk measures," Journal of Economic Dynamics and Control, Elsevier, vol. 39(C), pages 178-207.
    19. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2008. "Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization," Management Science, INFORMS, vol. 54(3), pages 573-585, March.
    20. Xing, Xin & Hu, Jinjin & Yang, Yaning, 2014. "Robust minimum variance portfolio with L-infinity constraints," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 107-117.
    21. Xin Chen & Melvyn Sim & Peng Sun, 2007. "A Robust Optimization Perspective on Stochastic Programming," Operations Research, INFORMS, vol. 55(6), pages 1058-1071, December.
    22. Dai, Zhifeng & Zhou, Huiting & Kang, Jie & Wen, Fenghua, 2021. "The skewness of oil price returns and equity premium predictability," Energy Economics, Elsevier, vol. 94(C).
    23. Han, Yingwei & Li, Ping & Xia, Yong, 2017. "Dynamic robust portfolio selection with copulas," Finance Research Letters, Elsevier, vol. 21(C), pages 190-200.
    24. Dai, Zhifeng & Zhu, Huan & Kang, Jie, 2021. "New technical indicators and stock returns predictability," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 127-142.
    25. Yu-Min Yen, 2016. "Sparse Weighted-Norm Minimum Variance Portfolios," Review of Finance, European Finance Association, vol. 20(3), pages 1259-1287.
    26. Xuan Vinh Doan & Xiaobo Li & Karthik Natarajan, 2015. "Robustness to Dependency in Portfolio Optimization Using Overlapping Marginals," Operations Research, INFORMS, vol. 63(6), pages 1468-1488, December.
    27. Quaranta, Anna Grazia & Zaffaroni, Alberto, 2008. "Robust optimization of conditional value at risk and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2046-2056, October.
    28. Xin Yang & Shigang Wen & Zhifeng Liu & Cai Li & Chuangxia Huang, 2019. "Dynamic Properties of Foreign Exchange Complex Network," Mathematics, MDPI, vol. 7(9), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ko, Hyungjin & Son, Bumho & Lee, Jaewook, 2024. "A novel integration of the Fama–French and Black–Litterman models to enhance portfolio management," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    2. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    3. Dai, Zhifeng & Wang, Fei, 2019. "Sparse and robust mean–variance portfolio optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1371-1378.
    4. Hongxin Zhao & Yilun Jiang & Yizhou Yang, 2023. "Robust and Sparse Portfolio: Optimization Models and Algorithms," Mathematics, MDPI, vol. 11(24), pages 1-20, December.
    5. Dai, Zhifeng & Wen, Fenghua, 2018. "Some improved sparse and stable portfolio optimization problems," Finance Research Letters, Elsevier, vol. 27(C), pages 46-52.
    6. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    7. Hongxin Zhao & Lingchen Kong & Hou-Duo Qi, 2021. "Optimal portfolio selections via $$\ell _{1, 2}$$ ℓ 1 , 2 -norm regularization," Computational Optimization and Applications, Springer, vol. 80(3), pages 853-881, December.
    8. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    9. Oikonomou, Ioannis & Platanakis, Emmanouil & Sutcliffe, Charles, 2018. "Socially responsible investment portfolios: Does the optimization process matter?," The British Accounting Review, Elsevier, vol. 50(4), pages 379-401.
    10. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    11. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2020. "Company classification using machine learning," Papers 2004.01496, arXiv.org, revised May 2020.
    12. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    13. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    14. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    15. Kremer, Philipp J. & Lee, Sangkyun & Bogdan, Małgorzata & Paterlini, Sandra, 2020. "Sparse portfolio selection via the sorted ℓ1-Norm," Journal of Banking & Finance, Elsevier, vol. 110(C).
    16. Chakrabarti, Deepayan, 2021. "Parameter-free robust optimization for the maximum-Sharpe portfolio problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 388-399.
    17. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    18. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    19. Dai, Zhifeng & Zhu, Huan, 2021. "Indicator selection and stock return predictability," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    20. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:27:y:2022:i:4:p:4784-4796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.