IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v82y2017icp244-264.html
   My bibliography  Save this article

Risk evaluations with robust approximate factor models

Author

Listed:
  • Chou, Ray Yeutien
  • Yen, Tso-Jung
  • Yen, Yu-Min

Abstract

Approximate factor models and their extensions are widely used in economic analysis and forecasting due to their ability to extracting useful information from a large number of relevant variables. In these models, candidate predictors are typically subject to some common components. In this paper we propose a new method for robustly estimating the approximate factor models and use it in risk assessments. We consider a class of approximate factor models in which the candidate predictors are additionally subject to idiosyncratic large uncommon components such as jumps or outliers. By assuming that occurrences of the uncommon components are rare, we develop an estimation procedure to simultaneously disentangle and estimate the common and uncommon components. We then use the proposed method to investigate whether risks from the latent factors are priced for expected returns of Fama and French 100 size and book-to-market ratio portfolios. We find that while the risk from the common factor is priced for the 100 portfolios, the risks from the idiosyncratic factors are not. However, we find that model uncertainty risks of the idiosyncratic factors are priced, suggesting that with effective diversifications, only the predictable idiosyncratic risks can be reduced, but the unpredictable ones may still exist. We also illustrate how the proposed method can be adopted on evaluating value at risk (VaR) and find it can delivery comparable results as the conventional methods on VaR evaluations.

Suggested Citation

  • Chou, Ray Yeutien & Yen, Tso-Jung & Yen, Yu-Min, 2017. "Risk evaluations with robust approximate factor models," Journal of Banking & Finance, Elsevier, vol. 82(C), pages 244-264.
  • Handle: RePEc:eee:jbfina:v:82:y:2017:i:c:p:244-264
    DOI: 10.1016/j.jbankfin.2016.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426616300796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2016.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    2. John Y. Campbell & Martin Lettau & Burton G. Malkiel & Yexiao Xu, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    5. Ang, Andrew & Hodrick, Robert J. & Xing, Yuhang & Zhang, Xiaoyan, 2009. "High idiosyncratic volatility and low returns: International and further U.S. evidence," Journal of Financial Economics, Elsevier, vol. 91(1), pages 1-23, January.
    6. Bali, Turan G. & Cakici, Nusret, 2008. "Idiosyncratic Volatility and the Cross Section of Expected Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(1), pages 29-58, March.
    7. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    8. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    9. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    10. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    11. Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1511-1543.
    12. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    13. repec:adr:anecst:y:2000:i:60:p:10 is not listed on IDEAS
    14. Emanuel Moench & Serena Ng & Simon Potter, 2013. "Dynamic Hierarchical Factor Model," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1811-1817, December.
    15. Jon Danielsson & Casper G. De Vries, 2000. "Value-at-Risk and Extreme Returns," Annals of Economics and Statistics, GENES, issue 60, pages 239-270.
    16. Merton, Robert C, 1987. "A Simple Model of Capital Market Equilibrium with Incomplete Information," Journal of Finance, American Finance Association, vol. 42(3), pages 483-510, July.
    17. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    18. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    19. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    20. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    21. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    22. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    23. Fu, Fangjian, 2009. "Idiosyncratic risk and the cross-section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 91(1), pages 24-37, January.
    24. Yu-Min Yen, 2016. "Sparse Weighted-Norm Minimum Variance Portfolios," Review of Finance, European Finance Association, vol. 20(3), pages 1259-1287.
    25. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    26. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chou, Ray Yeutien & Yen, Tso-Jung & Yen, Yu-Min, 2020. "Macroeconomic forecasting using approximate factor models with outliers," International Journal of Forecasting, Elsevier, vol. 36(2), pages 267-291.
    2. Byers, J.W. & Popova, I. & Simkins, B.J., 2021. "Robust estimation of conditional risk measures using machine learning algorithm for commodity futures prices in the presence of outliers," Journal of Commodity Markets, Elsevier, vol. 24(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nektarios Aslanidis & Charlotte Christiansen & Neophytos Lambertides & Christos S. Savva, 2019. "Idiosyncratic volatility puzzle: influence of macro-finance factors," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 381-401, February.
    2. Chou, Ray Yeutien & Yen, Tso-Jung & Yen, Yu-Min, 2020. "Macroeconomic forecasting using approximate factor models with outliers," International Journal of Forecasting, Elsevier, vol. 36(2), pages 267-291.
    3. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.
    4. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    5. Miffre, Joëlle & Brooks, Chris & Li, Xiafei, 2013. "Idiosyncratic volatility and the pricing of poorly-diversified portfolios," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 78-85.
    6. Yunting Liu, 2022. "The Short-Run and Long-Run Components of Idiosyncratic Volatility and Stock Returns," Management Science, INFORMS, vol. 68(2), pages 1573-1589, February.
    7. Nusret Cakici & Isil Erol & Dogan Tirtiroglu, 2014. "Tracking the Evolution of Idiosyncratic Risk and Cross-Sectional Expected Returns for US REITs," The Journal of Real Estate Finance and Economics, Springer, vol. 48(3), pages 415-440, April.
    8. Aboulamer, Anas & Kryzanowski, Lawrence, 2016. "Are idiosyncratic volatility and MAX priced in the Canadian market?," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 20-36.
    9. Berggrun, Luis & Lizarzaburu, Edmundo & Cardona, Emilio, 2016. "Idiosyncratic volatility and stock returns: Evidence from the MILA," Research in International Business and Finance, Elsevier, vol. 37(C), pages 422-434.
    10. Jiang, Danling & Peterson, David R. & Doran, James S., 2014. "Short-sale constraints and the idiosyncratic volatility puzzle: An event study approach," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 36-59.
    11. Mohammadreza Tavakoli Baghdadabad & Girijasankar Mallik, 2018. "Global idiosyncratic risk moments," Empirical Economics, Springer, vol. 55(2), pages 731-764, September.
    12. Esther Eiling, 2013. "Industry-Specific Human Capital, Idiosyncratic Risk, and the Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 68(1), pages 43-84, February.
    13. Abugri, Benjamin A. & Dutta, Sandip, 2014. "Are we overestimating REIT idiosyncratic risk? Analysis of pricing effects and persistence," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 249-259.
    14. Ciciretti, Rocco & Dalò, Ambrogio & Dam, Lammertjan, 2023. "The contributions of betas versus characteristics to the ESG premium," Journal of Empirical Finance, Elsevier, vol. 71(C), pages 104-124.
    15. Bai, Jushan & Duan, Jiangtao & Han, Xu, 2024. "The likelihood ratio test for structural changes in factor models," Journal of Econometrics, Elsevier, vol. 238(2).
    16. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    17. Hassen Raîs, 2016. "Idiosyncratic Risk and the Cross-Section of European Insurance Equity Returns," Post-Print hal-01764088, HAL.
    18. Ayadi, Mohamed A. & Cao, Xu & Lazrak, Skander & Wang, Yan, 2019. "Do idiosyncratic skewness and kurtosis really matter?," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    19. Rajnish Mehra & Sunil Wahal & Daruo Xie, 2021. "Is idiosyncratic risk conditionally priced?," Quantitative Economics, Econometric Society, vol. 12(2), pages 625-646, May.
    20. Bin Liu & Amalia Di Iorio, 2016. "The pricing of idiosyncratic volatility: An Australian study," Australian Journal of Management, Australian School of Business, vol. 41(2), pages 353-375, May.

    More about this item

    Keywords

    Approximate factor model; PCA; Norm penalty; Common factor; Idiosyncratic risk; VaR;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G31 - Financial Economics - - Corporate Finance and Governance - - - Capital Budgeting; Fixed Investment and Inventory Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:82:y:2017:i:c:p:244-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.