IDEAS home Printed from https://ideas.repec.org/a/oup/revage/v31y2009i4p814-833.html
   My bibliography  Save this article

The Impact of Integrated Pest Management Information Dissemination Methods on Insecticide Use and Efficiency: Evidence from Rice Producers in South Vietnam

Author

Listed:
  • Roderick M. Rejesus
  • Florencia G. Palis
  • Aileen V. Lapitan
  • Truong Thi Ngoc Chi
  • Mahabub Hossain

Abstract

This article examines the impact of two Integrated Pest Management information dissemination approaches on insecticide use and efficiency of Vietnamese rice farmers. Specifically, we investigate the impact of Farmer Field Schools (FFS) and "No Early Spray" (NES) mass media campaigns by utilizing econometric approaches that control for endogeneity and selection problems. Our results suggest that farmers exposed to FFS and NES information are more technically efficient than control farmers who have not been exposed to information from FFS or NES. However, only FFS farmers, not NES farmers, seem to have significantly reduced their insecticide use relative to non-FFS or non-NES control farmers. Copyright 2009 Agricultural and Applied Economics Association

Suggested Citation

  • Roderick M. Rejesus & Florencia G. Palis & Aileen V. Lapitan & Truong Thi Ngoc Chi & Mahabub Hossain, 2009. "The Impact of Integrated Pest Management Information Dissemination Methods on Insecticide Use and Efficiency: Evidence from Rice Producers in South Vietnam," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 31(4), pages 814-833, December.
  • Handle: RePEc:oup:revage:v:31:y:2009:i:4:p:814-833
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gershon Feder & Rinku Murgai & Jaime B. Quizon, 2004. "Sending Farmers Back to School: The Impact of Farmer Field Schools in Indonesia," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 26(1), pages 45-62.
    2. K. P. Kalirajan & J . C. Flinn*, 1983. "The Measurement Of Farm-Specific Technical Efficiency," Pakistan Journal of Applied Economics, Applied Economics Research Centre, vol. 2(2), pages 167-180.
    3. Thomas M. Burrows, 1983. "Pesticide Demand and Integrated Pest Management: A Limited Dependent Variable Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(4), pages 806-810.
    4. Van den Berg, Henk & Jiggins, Janice, 2007. "Investing in Farmers--The Impacts of Farmer Field Schools in Relation to Integrated Pest Management," World Development, Elsevier, vol. 35(4), pages 663-686, April.
    5. Tripp, Robert & Wijeratne, Mahinda & Piyadasa, V. Hiroshini, 2005. "What should we expect from farmer field schools? A Sri Lanka case study," World Development, Elsevier, vol. 33(10), pages 1705-1720, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tefera, T. & Kassie, M. & Midingoyi, S. & Muriithi, B., 2018. "Do farmers and the environment benefit from adopting IPM practices? Evidence from Kenya," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275946, International Association of Agricultural Economists.
    2. Santi Sanglestsawai & Roderick M. Rejesus & Jose M. Yorobe Jr., 2015. "Economic impacts of integrated pest management (IPM) farmer field schools (FFS): evidence from onion farmers in the Philippines," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 149-162, March.
    3. Tamini, Lota D., 2011. "A nonparametric analysis of the impact of agri-environmental advisory activities on best management practice adoption: A case study of Québec," Ecological Economics, Elsevier, vol. 70(7), pages 1363-1374, May.
    4. Alam, Shamma Adeeb & Wolff, Hendrik, 2016. "Do Pesticide Sellers Make Farmers Sick? Health, Information, and Adoption of Technology in Bangladesh," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(1), pages 1-34, January.
    5. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    6. Pandit, Mahesh & Paudel, Krishna P. & Hinson, Roger A., 2012. "Intensity of Integrated Pest Management (IPM) Practices Adoption by U.S. Nursery Crop Producers," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124942, Agricultural and Applied Economics Association.
    7. Carlberg, Eric & Kostandini, Genti & Dankyi, Awere, 2014. "The Effects of Integrated Pest Management Techniques Farmer Field Schools on Groundnut Productivity: Evidence from Ghana," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 53(1), pages 1-16, February.
    8. Henk Berg & Suzanne Phillips & Marcel Dicke & Marjon Fredrix, 2020. "Impacts of farmer field schools in the human, social, natural and financial domain: a qualitative review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1443-1459, December.
    9. Sally Brooks & Michael Loevinsohn, 2011. "Shaping agricultural innovation systems responsive to food insecurity and climate change," Natural Resources Forum, Blackwell Publishing, vol. 35(3), pages 185-200, August.
    10. Yorobe Jr., J.M. & Rejesus, R.M. & Hammig, M.D., 2011. "Insecticide use impacts of Integrated Pest Management (IPM) Farmer Field Schools: Evidence from onion farmers in the Philippines," Agricultural Systems, Elsevier, vol. 104(7), pages 580-587, September.
    11. Carlberg, Eric & Kostandini, Genti & Dankyi, Awere, 2012. "The Effects of Integrated Pest Management Techniques (IPM) Farmer Field Schools on Groundnut Productivity: Evidence from Ghana," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124876, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinyang Cai & Fengxiang Ding & Yu Hong & Ruifa Hu, 2021. "An Impact Analysis of Farmer Field Schools on Hog Productivity: Evidence from China," Agriculture, MDPI, vol. 11(10), pages 1-14, October.
    2. Yorobe Jr., J.M. & Rejesus, R.M. & Hammig, M.D., 2011. "Insecticide use impacts of Integrated Pest Management (IPM) Farmer Field Schools: Evidence from onion farmers in the Philippines," Agricultural Systems, Elsevier, vol. 104(7), pages 580-587, September.
    3. Jacopo Bonan & Laura Pagani, 2018. "Junior Farmer Field Schools, Agricultural Knowledge and Spillover Effects: Quasi-Experimental Evidence from Northern Uganda," Journal of Development Studies, Taylor & Francis Journals, vol. 54(11), pages 2007-2022, November.
    4. Hugh Waddington & Birte Snilstveit & Jorge Garcia Hombrados & Martina Vojtkova & Jock Anderson & Howard White, 2012. "PROTOCOL: Farmer Field Schools for Improving Farming Practices and Farmer Outcomes in Low‐ and Middle‐income Countries: A Systematic Review," Campbell Systematic Reviews, John Wiley & Sons, vol. 8(1), pages 1-48.
    5. Smale, Melinda & Byerlee, Derek & Jayne, Thom, 2011. "Maize revolutions in Sub-Saharan Africa," Policy Research Working Paper Series 5659, The World Bank.
    6. Mancini, Francesca & Termorshuizen, Aad J. & Jiggins, Janice L.S. & van Bruggen, Ariena H.C., 2008. "Increasing the environmental and social sustainability of cotton farming through farmer education in Andhra Pradesh, India," Agricultural Systems, Elsevier, vol. 96(1-3), pages 16-25, March.
    7. Satoshi Shimizutani & Shimpei Taguchi & Eiji Yamada & Hiroyuki Yamada, 2021. "The Impact of "Grow to Sell" Agricultural Extension on Smallholder Horticulture Farmers: Evidence from a Market- Oriented Approach in Kenya," Keio-IES Discussion Paper Series 2021-020, Institute for Economics Studies, Keio University.
    8. Chrysanthi Charatsari & Evagelos D. Lioutas & Alex Koutsouris, 2020. "Farmer field schools and the co-creation of knowledge and innovation: the mediating role of social capital," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(4), pages 1139-1154, December.
    9. Jinyang Cai & Guanming Shi & Ruifa Hu, 2016. "An Impact Analysis of Farmer Field School in China," Sustainability, MDPI, vol. 8(2), pages 1-14, February.
    10. Praneetvatakul, Suwanna & Waibel, Hermann, 2006. "Impact Assessment of Farmer Field School Using A Multi-Period Panel Data Model," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25499, International Association of Agricultural Economists.
    11. Praneetvatakul, S. & Waibel, H., 2007. "The Impact of Farmer Field School On Pesticide Use and Environment in Thailand," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 42, March.
    12. Davis, K. & Nkonya, E. & Kato, E. & Mekonnen, D.A. & Odendo, M. & Miiro, R. & Nkuba, J., 2012. "Impact of Farmer Field Schools on Agricultural Productivity and Poverty in East Africa," World Development, Elsevier, vol. 40(2), pages 402-413.
    13. Renkow, Mitch & Byerlee, Derek, 2010. "The impacts of CGIAR research: A review of recent evidence," Food Policy, Elsevier, vol. 35(5), pages 391-402, October.
    14. Denise Hörner & Adrien Bouguen & Markus Frölich & Meike Wollni, 2022. "Knowledge and Adoption of Complex Agricultural Technologies: Evidence from an Extension Experiment," The World Bank Economic Review, World Bank, vol. 36(1), pages 68-90.
    15. Jacob Ricker-Gilbert & George W. Norton & Jeffrey Alwang & Monayem Miah & Gershon Feder, 2008. "Cost-Effectiveness of Alternative Integrated Pest Management Extension Methods: An Example from Bangladesh," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(2), pages 252-269.
    16. Van den Berg, Henk & Jiggins, Janice, 2007. "Investing in Farmers--The Impacts of Farmer Field Schools in Relation to Integrated Pest Management," World Development, Elsevier, vol. 35(4), pages 663-686, April.
    17. Alex Koutsouris, 2012. "Exploring the emerging facilitation and brokerage roles for agricultural extension education," Working Papers 2012-4, Agricultural University of Athens, Department Of Agricultural Economics.
    18. Yamazaki, Satoshi & Resosudarmo, Budy P., 2006. "Does Sending Farmers Back to School Have An Impact? A Spatial Econometric Approach," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25427, International Association of Agricultural Economists.
    19. Tambo, Justice A. & Wünscher, Tobias, 2014. "Building farmers’ capacity for innovation generation: what are the determining factors?," 88th Annual Conference, April 9-11, 2014, AgroParisTech, Paris, France 170351, Agricultural Economics Society.
    20. Sally Brooks & Michael Loevinsohn, 2011. "Shaping agricultural innovation systems responsive to food insecurity and climate change," Natural Resources Forum, Blackwell Publishing, vol. 35(3), pages 185-200, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:revage:v:31:y:2009:i:4:p:814-833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.