IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v101y2014i3p703-710..html
   My bibliography  Save this article

Extended empirical likelihood for estimating equations

Author

Listed:
  • Min Tsao
  • Fan Wu

Abstract

We derive an extended empirical likelihood for parameters defined by estimating equations which generalizes the original empirical likelihood to the full parameter space. Under mild conditions, the extended empirical likelihood has all the asymptotic properties of the original empirical likelihood. The first-order extended empirical likelihood is easy to use and substantially more accurate than the original empirical likelihood.

Suggested Citation

  • Min Tsao & Fan Wu, 2014. "Extended empirical likelihood for estimating equations," Biometrika, Biometrika Trust, vol. 101(3), pages 703-710.
  • Handle: RePEc:oup:biomet:v:101:y:2014:i:3:p:703-710.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu014
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bartolucci, Francesco, 2007. "A penalized version of the empirical likelihood ratio for the population mean," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 104-110, January.
    2. Jiahua Chen & Yi Huang, 2013. "Finite-sample properties of the adjusted empirical likelihood," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 147-159, March.
    3. Chen, Song Xi & Cui, Hengjian, 2007. "On the second-order properties of empirical likelihood with moment restrictions," Journal of Econometrics, Elsevier, vol. 141(2), pages 492-516, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2017. "Empirical likelihood ratio in penalty form and the convex hull problem," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 507-529, November.
    2. Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
    3. Mahdieh Bayati & Seyed Kamran Ghoreishi & Jingjing Wu, 2021. "Bayesian analysis of restricted penalized empirical likelihood," Computational Statistics, Springer, vol. 36(2), pages 1321-1339, June.
    4. Tsao, Min & Wu, Fan, 2015. "Two-sample extended empirical likelihood for estimating equations," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 1-15.
    5. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2016. "Empirical Likelihood for Outlier Detection and Estimation in Autoregressive Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 315-336, May.
    6. Hui-Ling Lin & Zhouping Li & Dongliang Wang & Yichuan Zhao, 2017. "Jackknife empirical likelihood for the error variance in linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 151-166, April.
    7. Xianyang Zhang & Xiaofeng Shao, 2016. "On the coverage bound problem of empirical likelihood methods for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 395-421, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2017. "Empirical likelihood ratio in penalty form and the convex hull problem," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 507-529, November.
    2. Mahdieh Bayati & Seyed Kamran Ghoreishi & Jingjing Wu, 2021. "Bayesian analysis of restricted penalized empirical likelihood," Computational Statistics, Springer, vol. 36(2), pages 1321-1339, June.
    3. Xianyang Zhang & Xiaofeng Shao, 2016. "On the coverage bound problem of empirical likelihood methods for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 395-421, March.
    4. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    5. Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.
    6. Chen, Song Xi & Gao, Jiti & Tang, Chenghong, 2005. "A test for model specification of diffusion processes," MPRA Paper 11976, University Library of Munich, Germany, revised Feb 2007.
    7. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    8. Li, Minqiang & Peng, Liang & Qi, Yongcheng, 2011. "Reduce computation in profile empirical likelihood method," MPRA Paper 33744, University Library of Munich, Germany.
    9. Kakizawa, Yoshihide, 2011. "Improved additive adjustments for the LR/ELR test statistics," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1245-1255, August.
    10. Tong Tong Wu & Gang Li & Chengyong Tang, 2015. "Empirical Likelihood for Censored Linear Regression and Variable Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 798-812, September.
    11. Bin Dong & David E. Matthews, 2012. "Empirical Likelihood for Cumulative Hazard Ratio Estimation with Covariate Adjustment," Biometrics, The International Biometric Society, vol. 68(2), pages 408-418, June.
    12. Nicola Lunardon & Gianfranco Adimari, 2016. "Second-order Accurate Confidence Regions Based on Members of the Generalized Power Divergence Family," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 213-227, March.
    13. Song Xi Chen & Jiti Gao, 2010. "Simultaneous Testing of Mean and Variance Structures in Nonlinear Time Series Models," School of Economics and Public Policy Working Papers 2010-28, University of Adelaide, School of Economics and Public Policy.
    14. E. Beaubrun-Diant, Kevin. & Maury, Tristan-Pierre, 2016. "Home tenure, stock market participation, and composition of the household portfolio," Journal of Housing Economics, Elsevier, vol. 32(C), pages 1-17.
    15. Zhao, Yichuan & Su, Yueju & Yang, Hanfang, 2020. "Jackknife empirical likelihood inference for the Pietra ratio," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    16. repec:dau:papers:123456789/7331 is not listed on IDEAS
    17. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    18. Kévin Beaubrun-Diant & Tristan-Pierre Maury, 2011. "Assessing the Interaction between Real Estate and Equity in Households Portfolio Choice," Working Papers halshs-00635582, HAL.
    19. Jiayin Zheng & Junshan Shen & Shuyuan He, 2014. "Adjusted empirical likelihood for right censored lifetime data," Statistical Papers, Springer, vol. 55(3), pages 827-839, August.
    20. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    21. Liu, Yukun & Yu, Chi Wai, 2010. "Bartlett correctable two-sample adjusted empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1701-1711, August.
    22. Zhong, Pingshou & Cui, Hengjian, 2010. "Empirical likelihood for median regression model with designed censoring variables," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 240-251, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:3:p:703-710.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.