IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v178y2014ip3p613-623.html
   My bibliography  Save this article

On empirical likelihood statistical functions

Author

Listed:
  • Yuan, Ao
  • Xu, Jinfeng
  • Zheng, Gang

Abstract

We consider the empirical likelihood method for estimation of distribution and quantile functions where side information is incorporated through moment conditions. We systematically study the asymptotic properties of the estimators, such as the uniform strong laws of large numbers and weak convergence over classes of functions. Two Monte Carlo examples are also given to illustrate the practical utility of the method.

Suggested Citation

  • Yuan, Ao & Xu, Jinfeng & Zheng, Gang, 2014. "On empirical likelihood statistical functions," Journal of Econometrics, Elsevier, vol. 178(P3), pages 613-623.
  • Handle: RePEc:eee:econom:v:178:y:2014:i:p3:p:613-623
    DOI: 10.1016/j.jeconom.2013.08.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407613002017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2013.08.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biao Zhang, 1997. "Quantile Processes in the Presence of Auxiliary Information," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(1), pages 35-55, March.
    2. Imbens, Guido W, 2002. "Generalized Method of Moments and Empirical Likelihood," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 493-506, October.
    3. Gianfranco Adimari, 1997. "Empirical Likelihood Type Confidence Intervals Under Random Censorship," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(3), pages 447-466, September.
    4. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    5. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    6. Jing Qin & Biao Zhang, 2005. "Marginal likelihood, conditional likelihood and empirical likelihood: Connections and applications," Biometrika, Biometrika Trust, vol. 92(2), pages 251-270, June.
    7. Yuichi Kitamura, 2001. "Asymptotic Optimality of Empirical Likelihood for Testing Moment Restrictions," Econometrica, Econometric Society, vol. 69(6), pages 1661-1672, November.
    8. Chen, Song Xi & Cui, Hengjian, 2007. "On the second-order properties of empirical likelihood with moment restrictions," Journal of Econometrics, Elsevier, vol. 141(2), pages 492-516, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    2. Adnan Yousuf & T. Brown & B. Zhang & L. Rutto & M. Kering & V. Temu, 2014. "Evaluation of Composition and in vitro Dry Matter Disappearance of Alkali Treated Vegetable Soybean Residue," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 6(11), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    2. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    3. Smith, Richard J., 2007. "Efficient information theoretic inference for conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 138(2), pages 430-460, June.
    4. Prosper Dovonon, 2016. "Large Sample Properties of the Three-Step Euclidean Likelihood Estimators under Model Misspecification," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 465-514, April.
    5. Chen, Song Xi & Cui, Hengjian, 2007. "On the second-order properties of empirical likelihood with moment restrictions," Journal of Econometrics, Elsevier, vol. 141(2), pages 492-516, December.
    6. Richard Smith, 2005. "Local GEL methods for conditional moment restrictions," CeMMAP working papers CWP15/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Song Xi Chen & Jiti Gao, 2010. "Simultaneous Testing of Mean and Variance Structures in Nonlinear Time Series Models," School of Economics and Public Policy Working Papers 2010-28, University of Adelaide, School of Economics and Public Policy.
    8. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    9. Stefan Boes, 2010. "Count Data Models with Correlated Unobserved Heterogeneity," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 382-402, September.
    10. Gospodinov, Nikolay & Otsu, Taisuke, 2012. "Local GMM estimation of time series models with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 170(2), pages 476-490.
    11. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2003. "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 117(1), pages 55-93, November.
    12. Komunjer, Ivana & Ragusa, Giuseppe, 2016. "Existence And Characterization Of Conditional Density Projections," Econometric Theory, Cambridge University Press, vol. 32(4), pages 947-987, August.
    13. Ai, Chunrong & Chen, Xiaohong, 2012. "The semiparametric efficiency bound for models of sequential moment restrictions containing unknown functions," Journal of Econometrics, Elsevier, vol. 170(2), pages 442-457.
    14. Otsu, Taisuke & Whang, Yoon-Jae, 2011. "Testing For Nonnested Conditional Moment Restrictions Via Conditional Empirical Likelihood," Econometric Theory, Cambridge University Press, vol. 27(1), pages 114-153, February.
    15. repec:hum:wpaper:sfb649dp2017-016 is not listed on IDEAS
    16. Stanislav Anatolyev, 2007. "Optimal Instruments In Time Series: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 21(1), pages 143-173, February.
    17. Tryphonides, Andreas, 2017. "Conditional moment restrictions and the role of density information in estimated structural models," SFB 649 Discussion Papers 2017-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Lavergne, Pascal & Patilea, Valentin, 2013. "Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory," Journal of Econometrics, Elsevier, vol. 177(1), pages 47-59.
    19. Patrick Gagliardini & Diego Ronchetti, 2020. "Comparing Asset Pricing Models by the Conditional Hansen-Jagannathan Distance," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 333-394.
    20. Buchinsky, Moshe & Li, Fanghua & Liao, Zhipeng, 2022. "Estimation and inference of semiparametric models using data from several sources," Journal of Econometrics, Elsevier, vol. 226(1), pages 80-103.
    21. Su, Liangjun & White, Halbert, 2014. "Testing conditional independence via empirical likelihood," Journal of Econometrics, Elsevier, vol. 182(1), pages 27-44.
    22. Chen, Xiaohong & Pouzo, Demian & Powell, James L., 2019. "Penalized sieve GEL for weighted average derivatives of nonparametric quantile IV regressions," Journal of Econometrics, Elsevier, vol. 213(1), pages 30-53.

    More about this item

    Keywords

    Empirical likelihood; Quantile estimation; Uniform SLLN; Uniform CLT;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:178:y:2014:i:p3:p:613-623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.