IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v142y2015icp1-15.html
   My bibliography  Save this article

Two-sample extended empirical likelihood for estimating equations

Author

Listed:
  • Tsao, Min
  • Wu, Fan

Abstract

We propose a two-sample extended empirical likelihood for inference on the difference between two p-dimensional parameters defined by estimating equations. The standard two-sample empirical likelihood for the difference is Bartlett correctable but its domain is a bounded subset of the parameter space. We expand its domain through a composite similarity transformation to derive the two-sample extended empirical likelihood which is defined on the full parameter space. The extended empirical likelihood has the same asymptotic distribution as the standard one and can also achieve the second-order accuracy of the Bartlett correction. We include two applications to illustrate the use of two-sample empirical likelihood methods and to demonstrate the superior coverage accuracy of the extended empirical likelihood confidence regions.

Suggested Citation

  • Tsao, Min & Wu, Fan, 2015. "Two-sample extended empirical likelihood for estimating equations," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 1-15.
  • Handle: RePEc:eee:jmvana:v:142:y:2015:i:c:p:1-15
    DOI: 10.1016/j.jmva.2015.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15001785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xuemin Zi & Changliang Zou & Yukun Liu, 2012. "Two-sample empirical likelihood method for difference between coefficients in linear regression model," Statistical Papers, Springer, vol. 53(1), pages 83-93, February.
    2. Min Tsao & Fan Wu, 2014. "Extended empirical likelihood for estimating equations," Biometrika, Biometrika Trust, vol. 101(3), pages 703-710.
    3. Jing, Bing-Yi, 1995. "Two-sample empirical likelihood method," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 315-319, September.
    4. Qin, Yongsong & Rao, J.N.K. & Wu, Changbao, 2010. "Empirical likelihood confidence intervals for the Gini measure of income inequality," Economic Modelling, Elsevier, vol. 27(6), pages 1429-1435, November.
    5. Wen‐Hao Chen, 2009. "Cross‐National Differences In Income Mobility: Evidence From Canada, The United States, Great Britain And Germany," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 55(1), pages 75-100, March.
    6. David Domeij & Martin Floden, 2010. "Inequality Trends in Sweden 1978-2004," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 13(1), pages 179-208, January.
    7. Liu, Yukun & Zou, Changliang & Zhang, Runchu, 2008. "Empirical likelihood for the two-sample mean problem," Statistics & Probability Letters, Elsevier, vol. 78(5), pages 548-556, April.
    8. Chen, Song Xi & Cui, Hengjian, 2007. "On the second-order properties of empirical likelihood with moment restrictions," Journal of Econometrics, Elsevier, vol. 141(2), pages 492-516, December.
    9. Liu, Yukun & Yu, Chi Wai, 2010. "Bartlett correctable two-sample adjusted empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1701-1711, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Crudu, 2017. "Errors-in-Variables Models with Many Proxies," Department of Economics University of Siena 774, Department of Economics, University of Siena.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yukun & Yu, Chi Wai, 2010. "Bartlett correctable two-sample adjusted empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1701-1711, August.
    2. Wu, Fan & Tsao, Min, 2014. "Two-sample extended empirical likelihood," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 81-87.
    3. Varron, Davit, 2016. "Empirical likelihood confidence tubes for functional parameters in plug-in estimation," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 100-118.
    4. Mahdieh Bayati & Seyed Kamran Ghoreishi & Jingjing Wu, 2021. "Bayesian analysis of restricted penalized empirical likelihood," Computational Statistics, Springer, vol. 36(2), pages 1321-1339, June.
    5. Kun Chen & Ngai Hang Chan & Chun Yip Yau, 2020. "Bartlett correction of frequency domain empirical likelihood for time series with unknown innovation variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1159-1173, October.
    6. Canepa Alessandra, 2022. "Small Sample Adjustment for Hypotheses Testing on Cointegrating Vectors," Journal of Time Series Econometrics, De Gruyter, vol. 14(1), pages 51-85, January.
    7. N. Balakrishnan & N. Martín & L. Pardo, 2017. "Empirical phi-divergence test statistics for the difference of means of two populations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(2), pages 199-226, April.
    8. Tsagris, Michail & Preston, Simon & T.A. Wood, Andrew, 2016. "Nonparametric hypothesis testing for equality of means on the simplex," MPRA Paper 72771, University Library of Munich, Germany.
    9. Shen, Junshan & Yuen, Kam Chuen & Liu, Chunling, 2016. "Empirical likelihood confidence regions for one- or two- samples with doubly censored data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 285-293.
    10. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2017. "Empirical likelihood ratio in penalty form and the convex hull problem," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 507-529, November.
    11. Quynh Van Nong & Chi Tim Ng, 2021. "Clustering of subsample means based on pairwise L1 regularized empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 135-174, February.
    12. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    13. Stephen P. Jenkins & Philippe Van Kerm, 2016. "Assessing Individual Income Growth," Economica, London School of Economics and Political Science, vol. 83(332), pages 679-703, October.
    14. Roberto Iacono & Elisa Palagi, 2020. "Still the lands of equality? On the heterogeneity of individual factor income shares in the Nordics," LEM Papers Series 2020/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    15. Xiaofeng Lv & Gupeng Zhang & Guangyu Ren, 2017. "Gini index estimation for lifetime data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 275-304, April.
    16. Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.
    17. Chen, Song Xi & Gao, Jiti & Tang, Chenghong, 2005. "A test for model specification of diffusion processes," MPRA Paper 11976, University Library of Munich, Germany, revised Feb 2007.
    18. Weihua Zhao & Riquan Zhang & Yukun Liu & Jicai Liu, 2015. "Empirical likelihood based modal regression," Statistical Papers, Springer, vol. 56(2), pages 411-430, May.
    19. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    20. Peter Benczur & Zsombor Cseres-Gergely & Peter Harasztosi, 2017. "EU-wide income inequality in the era of the Great Recession," Budapest Working Papers on the Labour Market 1713, Institute of Economics, Centre for Economic and Regional Studies.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:142:y:2015:i:c:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.