IDEAS home Printed from https://ideas.repec.org/a/ora/journl/v2y2008i1p841-847.html
   My bibliography  Save this article

About Risk Process Estimation Techniques Employed By A Virtual Organization Which Is Directed Towards The Insurance Business

Author

Listed:
  • Covrig Mihaela

    (Academia de Studii Economice din Bucuresti, Facultatea de Cibernetica, Statistica si Informatica Economica)

  • Serban Radu

    (Academia de Studii Economice din Bucuresti, Facultatea de Cibernetica, Statistica si Informatica Economica)

Abstract

In a virtual organization directed on the insurance business, the estimations of the risk process and of the ruin probability are important concerns: for researchers, at the theoretical level, and for the management of the company, as these influence the insurer strategy. We consider the evolution over an extended period of time of the insurer surplus process. In this paper, we present some methods for the estimation of the ruin probability and for the evaluation of a reserve fund. We discuss the ruin probability with respect to: the parameters of the individual claim distribution, the load factor of premiums and the intensity parameter of the number of claims process. We analyze the model in which the premiums are computed according to the mean value principle. Also, we attempt the case when the initial capital is proportional to the expected value of the individual claim. We give numerical illustration.

Suggested Citation

  • Covrig Mihaela & Serban Radu, 2008. "About Risk Process Estimation Techniques Employed By A Virtual Organization Which Is Directed Towards The Insurance Business," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 2(1), pages 841-847, May.
  • Handle: RePEc:ora:journl:v:2:y:2008:i:1:p:841-847
    as

    Download full text from publisher

    File URL: http://steconomice.uoradea.ro/anale/volume/2008/v2-economy-and-business-administration/154.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grandell, Jan, 2000. "Simple approximations of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 157-173, May.
    2. Li, Shuanming & Garrido, José, 2005. "Ruin Probabilities for Two Classes of Risk Processes," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 61-77, May.
    3. Dickson, David C.M. & Willmot, Gordon E., 2005. "The Density of the Time to Ruin in the Classical Poisson Risk Model," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 45-60, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He Liu & Zhenhua Bao, 2015. "On a Discrete Interaction Risk Model with Delayed Claims," JRFM, MDPI, vol. 8(4), pages 1-14, September.
    2. Dassios, Angelos & Wu, Shanle, 2008. "Parisian ruin with exponential claims," LSE Research Online Documents on Economics 32033, London School of Economics and Political Science, LSE Library.
    3. Vaios Dermitzakis & Konstadinos Politis, 2011. "Asymptotics for the Moments of the Time to Ruin for the Compound Poisson Model Perturbed by Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 749-761, December.
    4. Yuguang Fan & Philip S. Griffin & Ross Maller & Alexander Szimayer & Tiandong Wang, 2017. "The Effects of Largest Claim and Excess of Loss Reinsurance on a Company’s Ruin Time and Valuation," Risks, MDPI, vol. 5(1), pages 1-27, January.
    5. Dickson, David C.M., 2016. "A note on some joint distribution functions involving the time of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 120-124.
    6. Yacine Koucha & Alfredo D. Egidio dos Reis, 2021. "Approximations to ultimate ruin probabilities with a Wienner process perturbation," Papers 2107.02537, arXiv.org.
    7. Chadjiconstantinidis, Stathis & Papaioannou, Apostolos D., 2009. "Analysis of the Gerber-Shiu function and dividend barrier problems for a risk process with two classes of claims," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 470-484, December.
    8. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    9. Krzysztof Burnecki & Marek A. Teuerle & Aleksandra Wilkowska, 2022. "Diffusion Approximations of the Ruin Probability for the Insurer–Reinsurer Model Driven by a Renewal Process," Risks, MDPI, vol. 10(6), pages 1-16, June.
    10. David J. Santana & Juan González-Hernández & Luis Rincón, 2017. "Approximation of the Ultimate Ruin Probability in the Classical Risk Model Using Erlang Mixtures," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 775-798, September.
    11. Diko, Peter & Usábel, Miguel, 2011. "A numerical method for the expected penalty-reward function in a Markov-modulated jump-diffusion process," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 126-131, July.
    12. Willmot, Gordon E., 2015. "On a partial integrodifferential equation of Seal’s type," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 54-61.
    13. Lee, Wing Yan & Li, Xiaolong & Liu, Fangda & Shi, Yifan & Yam, Sheung Chi Phillip, 2021. "A Fourier-cosine method for finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 256-267.
    14. Dickson, David C.M., 2012. "The joint distribution of the time to ruin and the number of claims until ruin in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 334-337.
    15. Cheung, Eric C.K. & Zhu, Wei, 2023. "Cumulative Parisian ruin in finite and infinite time horizons for a renewal risk process with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 84-101.
    16. Xie, Jiayi & Cui, Zhenyu & Zhang, Zhimin, 2022. "Some new infinite series expansions for the first passage time densities in a jump diffusion model with phase-type jumps," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    17. Feng, Runhuan & Volkmer, Hans W., 2012. "Modeling credit value adjustment with downgrade-triggered termination clause using a ruin theoretic approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 409-421.
    18. Avram, F. & Pistorius, M., 2014. "On matrix exponential approximations of ruin probabilities for the classic and Brownian perturbed Cramér–Lundberg processes," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 57-64.
    19. Florin Avram & Romain Biard & Christophe Dutang & Stéphane Loisel & Landy Rabehasaina, 2014. "A survey of some recent results on Risk Theory," Post-Print hal-01616178, HAL.
    20. Gildas Ratovomirija, 2015. "Multivariate Stop loss Mixed Erlang Reinsurance risk: Aggregation, Capital allocation and Default risk," Papers 1501.07297, arXiv.org.

    More about this item

    Keywords

    virtual organization; ruin probability; risk process; adjustment coefficient;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ora:journl:v:2:y:2008:i:1:p:841-847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catalin ZMOLE The email address of this maintainer does not seem to be valid anymore. Please ask Catalin ZMOLE to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/feoraro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.