IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v67y2016icp120-124.html
   My bibliography  Save this article

A note on some joint distribution functions involving the time of ruin

Author

Listed:
  • Dickson, David C.M.

Abstract

In a recent paper, Willmot (2015) derived an expression for the joint distribution function of the time of ruin and the deficit at ruin in the classical risk model. We show how his approach can be applied to obtain a simpler expression, and by interpreting this expression by probabilistic reasoning we obtain solutions for more general risk models. We also discuss how some of Willmot’s results relate to existing literature on the probability and severity of ruin.

Suggested Citation

  • Dickson, David C.M., 2016. "A note on some joint distribution functions involving the time of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 120-124.
  • Handle: RePEc:eee:insuma:v:67:y:2016:i:c:p:120-124
    DOI: 10.1016/j.insmatheco.2015.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715301840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiandong Ren, 2008. "On the Laplace Transform of the Aggregate Discounted Claims with Markovian Arrivals," North American Actuarial Journal, Taylor & Francis Journals, vol. 12(2), pages 198-206.
    2. Willmot, Gordon E., 2007. "On the discounted penalty function in the renewal risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 17-31, July.
    3. Li, Jingchao & Dickson, David C.M. & Li, Shuanming, 2015. "Some ruin problems for the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 1-8.
    4. Gerber, Hans U. & Goovaerts, Marc J. & Kaas, Rob, 1987. "On the Probability and Severity of Ruin," ASTIN Bulletin, Cambridge University Press, vol. 17(2), pages 151-163, November.
    5. Garcia, Jorge M.A., 2005. "Explicit Solutions for Survival Probabilities in the Classical Risk Model," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 113-130, May.
    6. Dickson, David C. M. & Waters, Howard R., 1992. "The Probability and Severity of Ruin in Finite and Infinite Time," ASTIN Bulletin, Cambridge University Press, vol. 22(2), pages 177-190, November.
    7. Dickson, David C.M., 2008. "Some Explicit Solutions for the Joint Density of the Time of Ruin and the Deficit at Ruin," ASTIN Bulletin, Cambridge University Press, vol. 38(1), pages 259-276, May.
    8. Dickson, D. C. M., 2007. "Some Finite Time Ruin Problems," Annals of Actuarial Science, Cambridge University Press, vol. 2(2), pages 217-232, September.
    9. Dickson, David C.M. & Willmot, Gordon E., 2005. "The Density of the Time to Ruin in the Classical Poisson Risk Model," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 45-60, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dickson, David C.M. & Li, Shuanming, 2010. "Finite time ruin problems for the Erlang(2) risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 12-18, February.
    2. Emilio Gómez-Déniz & José María Sarabia & Enrique Calderín-Ojeda, 2019. "Ruin Probability Functions and Severity of Ruin as a Statistical Decision Problem," Risks, MDPI, vol. 7(2), pages 1-16, June.
    3. Anna Castañer & M.Mercè Claramunt & Maite Mármol, 2014. "Some optimization and decision problems in proportional reinsurance," UB School of Economics Working Papers 2014/310, University of Barcelona School of Economics.
    4. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    5. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    6. Li, Jingchao & Dickson, David C.M. & Li, Shuanming, 2015. "Some ruin problems for the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 1-8.
    7. Gildas Ratovomirija, 2015. "Multivariate Stop loss Mixed Erlang Reinsurance risk: Aggregation, Capital allocation and Default risk," Papers 1501.07297, arXiv.org.
    8. Usabel, M. A., 1999. "Practical approximations for multivariate characteristics of risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 397-413, December.
    9. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    10. Wong, Jeff T.Y. & Cheung, Eric C.K., 2015. "On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 280-290.
    11. Tsai, Cary Chi-Liang & Sun, Li-juan, 2004. "On the discounted distribution functions for the Erlang(2) risk process," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 5-19, August.
    12. Yi Lu, 2016. "On the Evaluation of Expected Penalties at Claim Instants That Cause Ruin in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 237-255, March.
    13. Shuanming Li & Yi Lu, 2018. "On the Moments and the Distribution of Aggregate Discounted Claims in a Markovian Environment," Risks, MDPI, vol. 6(2), pages 1-16, May.
    14. Usabel, M. A., 1999. "A note on the Taylor series expansions for multivariate characteristics of classical risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 37-47, September.
    15. Lin, X. Sheldon & Willmot, Gordon E., 1999. "Analysis of a defective renewal equation arising in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 63-84, September.
    16. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    17. Cheng, Yebin & Tang, Qihe & Yang, Hailiang, 2002. "Approximations for moments of deficit at ruin with exponential and subexponential claims," Statistics & Probability Letters, Elsevier, vol. 59(4), pages 367-378, October.
    18. Willmot, Gordon E. & Sheldon Lin, X., 1998. "Exact and approximate properties of the distribution of surplus before and after ruin," Insurance: Mathematics and Economics, Elsevier, vol. 23(1), pages 91-110, October.
    19. Frey, Andreas & Schmidt, Volker, 1996. "Taylor-series expansion for multivariate characteristics of classical risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 18(1), pages 1-12, May.
    20. Usabel, Miguel, 1999. "Calculating multivariate ruin probabilities via Gaver-Stehfest inversion technique," Insurance: Mathematics and Economics, Elsevier, vol. 25(2), pages 133-142, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:67:y:2016:i:c:p:120-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.