IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v35y2005i01p61-77_01.html
   My bibliography  Save this article

Ruin Probabilities for Two Classes of Risk Processes

Author

Listed:
  • Li, Shuanming
  • Garrido, José

Abstract

We consider a risk model with two independent classes of insurance risks. We assume that the two independent claim counting processes are, respectively, Poisson and Sparre Andersen processes with generalized Erlang(2) claim inter-arrival times. The Laplace transform of the non-ruin probability is derived from a system of integro-differential equations. Explicit results can be obtained when the initial reserve is zero and the claim severity distributions of both classes belong to the Kn family of distributions. A relation between the ruin probability and the distribution of the supremum before ruin is identified. Finally, the Laplace transform of the non-ruin probability of a perturbed Sparre Andersen risk model with generalized Erlang(2) claim inter-arrival times is derived when the compound Poisson process converges weakly to a Wiener process.

Suggested Citation

  • Li, Shuanming & Garrido, José, 2005. "Ruin Probabilities for Two Classes of Risk Processes," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 61-77, May.
  • Handle: RePEc:cup:astinb:v:35:y:2005:i:01:p:61-77_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100014069/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Covrig Mihaela & Serban Radu, 2008. "About Risk Process Estimation Techniques Employed By A Virtual Organization Which Is Directed Towards The Insurance Business," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 2(1), pages 841-847, May.
    2. He Liu & Zhenhua Bao, 2015. "On a Discrete Interaction Risk Model with Delayed Claims," JRFM, MDPI, vol. 8(4), pages 1-14, September.
    3. Diko, Peter & Usábel, Miguel, 2011. "A numerical method for the expected penalty-reward function in a Markov-modulated jump-diffusion process," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 126-131, July.
    4. Chadjiconstantinidis, Stathis & Papaioannou, Apostolos D., 2009. "Analysis of the Gerber-Shiu function and dividend barrier problems for a risk process with two classes of claims," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 470-484, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:35:y:2005:i:01:p:61-77_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.