IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v50y2012i3p334-337.html
   My bibliography  Save this article

The joint distribution of the time to ruin and the number of claims until ruin in the classical risk model

Author

Listed:
  • Dickson, David C.M.

Abstract

We use probabilistic arguments to derive an expression for the joint density of the time to ruin and the number of claims until ruin in the classical risk model. From this we obtain a general expression for the probability function of the number of claims until ruin. We also consider the moments of the number of claims until ruin and illustrate our results in the case of exponentially distributed individual claims. Finally, we briefly discuss joint distributions involving the surplus prior to ruin and deficit at ruin.

Suggested Citation

  • Dickson, David C.M., 2012. "The joint distribution of the time to ruin and the number of claims until ruin in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 334-337.
  • Handle: RePEc:eee:insuma:v:50:y:2012:i:3:p:334-337
    DOI: 10.1016/j.insmatheco.2011.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668711001429
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2011.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Landriault, David & Shi, Tianxiang & Willmot, Gordon E., 2011. "Joint densities involving the time to ruin in the Sparre Andersen risk model under exponential assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 371-379.
    2. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    3. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    4. Dickson,David C. M., 2005. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521846400.
    5. Egidio dos Reis, Alfredo D., 2002. "How many claims does it take to get ruined and recovered?," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 235-248, October.
    6. Gerber, Hans U., 1988. "Mathematical fun with ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 7(1), pages 15-23, January.
    7. Stanford, D.A. & Stroiński, K.J., 1994. "Recursive Methods for Computing Finite-Time Ruin Probabilities for Phase-Distributed Claim Sizes," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 235-254, November.
    8. Albrecher, Hansjorg & Boxma, Onno J., 2005. "On the discounted penalty function in a Markov-dependent risk model," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 650-672, December.
    9. Dickson, D. C. M., 2007. "Some Finite Time Ruin Problems," Annals of Actuarial Science, Cambridge University Press, vol. 2(2), pages 217-232, September.
    10. Dickson, David C.M. & Waters, Howard R., 2006. "Optimal Dynamic Reinsurance," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 415-432, November.
    11. Dickson, David C.M. & Willmot, Gordon E., 2005. "The Density of the Time to Ruin in the Classical Poisson Risk Model," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 45-60, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Landriault, David & Li, Bin & Shi, Tianxiang & Xu, Di, 2019. "On the distribution of classic and some exotic ruin times," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 38-45.
    2. Yi Lu, 2016. "On the Evaluation of Expected Penalties at Claim Instants That Cause Ruin in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 237-255, March.
    3. Liu, Peng & Zhang, Chunsheng & Ji, Lanpeng, 2017. "A note on ruin problems in perturbed classical risk models," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 28-33.
    4. Willmot, Gordon E., 2015. "On a partial integrodifferential equation of Seal’s type," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 54-61.
    5. Galina Horáková & František Slaninka & Zsolt Simonka, 2021. "The Reduction of Initial Reserves Using the Optimal Reinsurance Chains in Non-Life Insurance," Mathematics, MDPI, vol. 9(12), pages 1-20, June.
    6. Cheung, Eric C.K., 2013. "Moments of discounted aggregate claim costs until ruin in a Sparre Andersen risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 343-354.
    7. Dong, Hua & Zhou, Xiaowen, 2019. "On a spectrally negative Lévy risk process with periodic dividends and capital injections," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    8. Shuanming Li & Yi Lu & Can Jin, 2016. "Number of Jumps in Two-Sided First-Exit Problems for a Compound Poisson Process," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 747-764, September.
    9. Li, Jingchao & Dickson, David C.M. & Li, Shuanming, 2015. "Some ruin problems for the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 1-8.
    10. Bihao Su & Chenglong Xu & Jingchao Li, 2022. "A Deep Neural Network Approach to Solving for Seal’s Type Partial Integro-Differential Equation," Mathematics, MDPI, vol. 10(9), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jingchao & Dickson, David C.M. & Li, Shuanming, 2015. "Some ruin problems for the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 1-8.
    2. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    3. Yi Lu, 2016. "On the Evaluation of Expected Penalties at Claim Instants That Cause Ruin in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 237-255, March.
    4. Anna Castañer & M. Claramunt & Maite Mármol, 2012. "Ruin probability and time of ruin with a proportional reinsurance threshold strategy," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 614-638, October.
    5. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    6. Landriault, David & Shi, Tianxiang & Willmot, Gordon E., 2011. "Joint densities involving the time to ruin in the Sparre Andersen risk model under exponential assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 371-379.
    7. Li, Shuanming & Lu, Yi, 2017. "Distributional study of finite-time ruin related problems for the classical risk model," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 319-330.
    8. Feng, Runhuan & Volkmer, Hans W., 2012. "Modeling credit value adjustment with downgrade-triggered termination clause using a ruin theoretic approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 409-421.
    9. Albrecher, Hansjörg & Constantinescu, Corina & Pirsic, Gottlieb & Regensburger, Georg & Rosenkranz, Markus, 2010. "An algebraic operator approach to the analysis of Gerber-Shiu functions," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 42-51, February.
    10. Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.
    11. Xin Zhang, 2008. "On the Ruin Problem in a Markov-Modulated Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 225-238, June.
    12. Claude Lefèvre & Philippe Picard, 2013. "Ruin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach," Risks, MDPI, vol. 1(3), pages 1-21, December.
    13. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    14. Liu, Peng & Zhang, Chunsheng & Ji, Lanpeng, 2017. "A note on ruin problems in perturbed classical risk models," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 28-33.
    15. Wang, Zijia & Landriault, David & Li, Shu, 2021. "An insurance risk process with a generalized income process: A solvency analysis," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 133-146.
    16. Ahn, Soohan & Badescu, Andrei L., 2007. "On the analysis of the Gerber-Shiu discounted penalty function for risk processes with Markovian arrivals," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 234-249, September.
    17. Frostig, Esther & Pitts, Susan M. & Politis, Konstadinos, 2012. "The time to ruin and the number of claims until ruin for phase-type claims," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 19-25.
    18. Maite Teresa Marmol Jimenez & M. Mercedes Claramunt Bielsa, 2006. "Time of ruin in a risk model with generalized Erlang (n) interclaim times and a constant dividend barrier," Working Papers in Economics 157, Universitat de Barcelona. Espai de Recerca en Economia.
    19. Landriault, David & Lemieux, Christiane & Willmot, Gordon E., 2012. "An adaptive premium policy with a Bayesian motivation in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 370-378.
    20. Cheung, Eric C.K. & Zhu, Wei, 2023. "Cumulative Parisian ruin in finite and infinite time horizons for a renewal risk process with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 84-101.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:50:y:2012:i:3:p:334-337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.