IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v560y2018i7716d10.1038_s41586-018-0358-x.html
   My bibliography  Save this article

Globally rising soil heterotrophic respiration over recent decades

Author

Listed:
  • Ben Bond-Lamberty

    (Joint Global Change Research Institute at the University of Maryland–College Park)

  • Vanessa L. Bailey

    (Pacific Northwest National Laboratory)

  • Min Chen

    (Joint Global Change Research Institute at the University of Maryland–College Park)

  • Christopher M. Gough

    (Virginia Commonwealth University)

  • Rodrigo Vargas

    (University of Delaware)

Abstract

Global soils store at least twice as much carbon as Earth’s atmosphere1,2. The global soil-to-atmosphere (or total soil respiration, RS) carbon dioxide (CO2) flux is increasing3,4, but the degree to which climate change will stimulate carbon losses from soils as a result of heterotrophic respiration (RH) remains highly uncertain5–8. Here we use an updated global soil respiration database9 to show that the observed soil surface RH:RS ratio increased significantly, from 0.54 to 0.63, between 1990 and 2014 (P = 0.009). Three additional lines of evidence provide support for this finding. By analysing two separate global gross primary production datasets10,11, we find that the ratios of both RH and RS to gross primary production have increased over time. Similarly, significant increases in RH are observed against the longest available solar-induced chlorophyll fluorescence global dataset, as well as gross primary production computed by an ensemble of global land models. We also show that the ratio of night-time net ecosystem exchange to gross primary production is rising across the FLUXNET201512 dataset. All trends are robust to sampling variability in ecosystem type, disturbance, methodology, CO2 fertilization effects and mean climate. Taken together, our findings provide observational evidence that global RH is rising, probably in response to environmental changes, consistent with meta-analyses13–16 and long-term experiments17. This suggests that climate-driven losses of soil carbon are currently occurring across many ecosystems, with a detectable and sustained trend emerging at the global scale.

Suggested Citation

  • Ben Bond-Lamberty & Vanessa L. Bailey & Min Chen & Christopher M. Gough & Rodrigo Vargas, 2018. "Globally rising soil heterotrophic respiration over recent decades," Nature, Nature, vol. 560(7716), pages 80-83, August.
  • Handle: RePEc:nat:nature:v:560:y:2018:i:7716:d:10.1038_s41586-018-0358-x
    DOI: 10.1038/s41586-018-0358-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0358-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0358-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Wei & Yalan Liu & Huimin Xiang & Jiaen Zhang & Saifei Li & Jiayue Yang, 2019. "Soil pH Responses to Simulated Acid Rain Leaching in Three Agricultural Soils," Sustainability, MDPI, vol. 12(1), pages 1-12, December.
    2. Ee Ling Ng & Junling Zhang, 2019. "The Search for the Meaning of Soil Health: Lessons from Human Health and Ecosystem Health," Sustainability, MDPI, vol. 11(13), pages 1-6, July.
    3. Alon Nissan & Uria Alcolombri & Nadav Peleg & Nir Galili & Joaquin Jimenez-Martinez & Peter Molnar & Markus Holzner, 2023. "Global warming accelerates soil heterotrophic respiration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Charlotte J. Alster & Allycia Laar & Jordan P. Goodrich & Vickery L. Arcus & Julie R. Deslippe & Alexis J. Marshall & Louis A. Schipper, 2023. "Quantifying thermal adaptation of soil microbial respiration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Jinshi Jian & Vanessa Bailey & Kalyn Dorheim & Alexandra G. Konings & Dalei Hao & Alexey N. Shiklomanov & Abigail Snyder & Meredith Steele & Munemasa Teramoto & Rodrigo Vargas & Ben Bond-Lamberty, 2022. "Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Hongru Sun & Guangsheng Zhou & Zhenzhu Xu & Yuhui Wang & Xiaodi Liu & Hongying Yu & Quanhui Ma & Bingrui Jia, 2020. "Temperature sensitivity increases with decreasing soil carbon quality in forest ecosystems across northeast China," Climatic Change, Springer, vol. 160(3), pages 373-384, June.
    7. Egor A. Dyukarev & Sergey A. Kurakov, 2023. "Response of Bare Soil Respiration to Air and Soil Temperature Variations According to Different Models: A Case Study of an Urban Grassland," Land, MDPI, vol. 12(5), pages 1-20, April.
    8. Xue Chen & Haibo Hu & Qi Wang & Xia Wang & Bing Ma, 2024. "Exploring the Factors Affecting Terrestrial Soil Respiration in Global Warming Manipulation Experiments Based on Meta-Analysis," Agriculture, MDPI, vol. 14(9), pages 1-15, September.
    9. Ronan Connolly & Michael Connolly & Robert M. Carter & Willie Soon, 2020. "How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies? A Semi-Empirical Assessment," Energies, MDPI, vol. 13(6), pages 1-51, March.
    10. Kailiang Yu & Philippe Ciais & Sonia I. Seneviratne & Zhihua Liu & Han Y. H. Chen & Jonathan Barichivich & Craig D. Allen & Hui Yang & Yuanyuan Huang & Ashley P. Ballantyne, 2022. "Field-based tree mortality constraint reduces estimates of model-projected forest carbon sinks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Grafström, Jonas & Sandström, Christian, 2021. "Ratio Working Paper No. 352: More from less? Economic growth and sustainability in Sweden," Ratio Working Papers 352, The Ratio Institute.
    12. Nur Hidayah Hamidi & Osumanu Haruna Ahmed & Latifah Omar & Huck Ywih Ch’ng & Prisca Divra Johan & Puvan Paramisparam & Mohamadu Boyie Jalloh, 2021. "Acid Soils Nitrogen Leaching and Buffering Capacity Mitigation Using Charcoal and Sago Bark Ash," Sustainability, MDPI, vol. 13(21), pages 1-17, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:560:y:2018:i:7716:d:10.1038_s41586-018-0358-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.