IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i9p1581-d1476096.html
   My bibliography  Save this article

Exploring the Factors Affecting Terrestrial Soil Respiration in Global Warming Manipulation Experiments Based on Meta-Analysis

Author

Listed:
  • Xue Chen

    (Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China)

  • Haibo Hu

    (Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China)

  • Qi Wang

    (Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province, Geological Environment Exploration Institute of Jiangsu Province, Nanjing 211100, China)

  • Xia Wang

    (Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China)

  • Bing Ma

    (Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province, Geological Environment Exploration Institute of Jiangsu Province, Nanjing 211100, China)

Abstract

Warming significantly impacts soil respiration in terrestrial ecosystems, thereby altering global carbon cycle processes. Numerous field experiments have investigated the effects of warming on soil respiration (Rs), but the results have been inconsistent due to various factors such as ecosystem type, soil warming amplitude, duration, and environmental conditions. In this study, we conducted a meta-analysis of 1339 cases from 70 studies in terrestrial ecosystems to evaluate the response of Rs, heterotrophic respiration (Rh), and autotrophic respiration (Ra) to global warming. The results indicated that Rs, Rh, and Ra increased by 13.88%, 15.03%, and 19.72%, respectively, with a significant rise observed across different ecosystems. Generally, Rs increased with rising temperatures within a specific range (0–4 °C), whereas higher temperatures (>4 °C) did not significantly affect Rs. Moreover, Rs, Rh, and Ra exhibited an initial increase followed by a decrease with prolonged duration, indicating an adaptive response to climate warming. Additionally, Rs and Rh exhibit significant seasonal variations, with levels in winter being markedly higher than in summer. Furthermore, environmental factors exerted direct or indirect effects on soil respiration components. The factors’ importance for Rs was ranked as microbial biomass carbon (MBC) > mean annual temperature (MAT) > mean annual precipitation (MAP), for Rh as soil organic carbon (SOC) > MBC > MAT > MAP, and for Ra as belowground biomass (BGB) > aboveground biomass (AGB) > SOC. Future research should focus on the interactions among explanatory factors to elucidate the response mechanisms of soil respiration under global warming conditions.

Suggested Citation

  • Xue Chen & Haibo Hu & Qi Wang & Xia Wang & Bing Ma, 2024. "Exploring the Factors Affecting Terrestrial Soil Respiration in Global Warming Manipulation Experiments Based on Meta-Analysis," Agriculture, MDPI, vol. 14(9), pages 1-15, September.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1581-:d:1476096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/9/1581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/9/1581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walter C. Oechel & George L. Vourlitis & Steven J. Hastings & Rommel C. Zulueta & Larry Hinzman & Douglas Kane, 2000. "Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming," Nature, Nature, vol. 406(6799), pages 978-981, August.
    2. Ben Bond-Lamberty & Vanessa L. Bailey & Min Chen & Christopher M. Gough & Rodrigo Vargas, 2018. "Globally rising soil heterotrophic respiration over recent decades," Nature, Nature, vol. 560(7716), pages 80-83, August.
    3. Ben Bond-Lamberty & Allison Thomson, 2010. "Temperature-associated increases in the global soil respiration record," Nature, Nature, vol. 464(7288), pages 579-582, March.
    4. Viechtbauer, Wolfgang, 2010. "Conducting Meta-Analyses in R with the metafor Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i03).
    5. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    6. Kristiina Karhu & Marc D. Auffret & Jennifer A. J. Dungait & David W. Hopkins & James I. Prosser & Brajesh K. Singh & Jens-Arne Subke & Philip A. Wookey & Göran I. Ågren & Maria-Teresa Sebastià & Fabr, 2014. "Temperature sensitivity of soil respiration rates enhanced by microbial community response," Nature, Nature, vol. 513(7516), pages 81-84, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinshi Jian & Vanessa Bailey & Kalyn Dorheim & Alexandra G. Konings & Dalei Hao & Alexey N. Shiklomanov & Abigail Snyder & Meredith Steele & Munemasa Teramoto & Rodrigo Vargas & Ben Bond-Lamberty, 2022. "Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    3. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Yanan Liang & Yanpeng Cai & Junxia Yan & Hongjian Li, 2019. "Estimation of Soil Respiration by Its Driving Factors Based on Multi-Source Data in a Sub-Alpine Meadow in North China," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    5. Gao, Yanni & Yu, Guirui & Li, Shenggong & Yan, Huimin & Zhu, Xianjin & Wang, Qiufeng & Shi, Peili & Zhao, Liang & Li, Yingnian & Zhang, Fawei & Wang, Yanfen & Zhang, Junhui, 2015. "A remote sensing model to estimate ecosystem respiration in Northern China and the Tibetan Plateau," Ecological Modelling, Elsevier, vol. 304(C), pages 34-43.
    6. MB Dastagiri & Anjani Sneha Vajrala, 2018. "Financing Climate Change on Global Agriculture-An Overview," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 12(5), pages 148-153, July.
    7. Łukasz Radosz & Damian Chmura & Dariusz Prostański & Gabriela Woźniak, 2023. "The Soil Respiration of Coal Mine Heaps’ Novel Ecosystems in Relation to Biomass and Biotic Parameters," Energies, MDPI, vol. 16(20), pages 1-24, October.
    8. Charlotte J. Alster & Allycia Laar & Jordan P. Goodrich & Vickery L. Arcus & Julie R. Deslippe & Alexis J. Marshall & Louis A. Schipper, 2023. "Quantifying thermal adaptation of soil microbial respiration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Terence Epule Epule, 2015. "A New Compendium of Soil Respiration Data for Africa," Challenges, MDPI, vol. 6(1), pages 1-10, April.
    10. Alon Nissan & Uria Alcolombri & Nadav Peleg & Nir Galili & Joaquin Jimenez-Martinez & Peter Molnar & Markus Holzner, 2023. "Global warming accelerates soil heterotrophic respiration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Jing Tian & Jennifer A. J. Dungait & Ruixing Hou & Ye Deng & Iain P. Hartley & Yunfeng Yang & Yakov Kuzyakov & Fusuo Zhang & M. Francesca Cotrufo & Jizhong Zhou, 2024. "Microbially mediated mechanisms underlie soil carbon accrual by conservation agriculture under decade-long warming," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Creelman, Chance & Risk, Dave, 2011. "Network design for soil CO2 monitoring of the northern North American region," Ecological Modelling, Elsevier, vol. 222(18), pages 3421-3428.
    13. Xiaoying Bao & Xiaoxue Zhu & Xiaofeng Chang & Shiping Wang & Burenbayin Xu & Caiyun Luo & Zhenhua Zhang & Qi Wang & Yichao Rui & Xiaoying Cui, 2016. "Effects of Soil Temperature and Moisture on Soil Respiration on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-14, October.
    14. Hongru Sun & Guangsheng Zhou & Zhenzhu Xu & Yuhui Wang & Xiaodi Liu & Hongying Yu & Quanhui Ma & Bingrui Jia, 2020. "Temperature sensitivity increases with decreasing soil carbon quality in forest ecosystems across northeast China," Climatic Change, Springer, vol. 160(3), pages 373-384, June.
    15. Egor A. Dyukarev & Sergey A. Kurakov, 2023. "Response of Bare Soil Respiration to Air and Soil Temperature Variations According to Different Models: A Case Study of an Urban Grassland," Land, MDPI, vol. 12(5), pages 1-20, April.
    16. Whitney S Beck & Ed K Hall, 2018. "Confounding factors in algal phosphorus limitation experiments," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
    17. Hui Wei & Yalan Liu & Huimin Xiang & Jiaen Zhang & Saifei Li & Jiayue Yang, 2019. "Soil pH Responses to Simulated Acid Rain Leaching in Three Agricultural Soils," Sustainability, MDPI, vol. 12(1), pages 1-12, December.
    18. Lychuk, Taras E. & Hill, Robert L. & Izaurralde, Roberto C. & Momen, Bahram & Thomson, Allison M., 2021. "Evaluation of climate change impacts and effectiveness of adaptation options on nitrate loss, microbial respiration, and soil organic carbon in the Southeastern USA," Agricultural Systems, Elsevier, vol. 193(C).
    19. Xindong Xue & W. Robert Reed & Robbie C.M. van Aert, 2022. "Social Capital and Economic Growth: A Meta-Analysis," Working Papers in Economics 22/20, University of Canterbury, Department of Economics and Finance.
    20. Bart Verkuil & Serpil Atasayi & Marc L Molendijk, 2015. "Workplace Bullying and Mental Health: A Meta-Analysis on Cross-Sectional and Longitudinal Data," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1581-:d:1476096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.