IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1184-d1581823.html
   My bibliography  Save this article

Enhancing Soil Resilience to Climate Change: Long-Term Effects of Organic Amendments on Soil Thermal and Physical Properties in Tea-Cultivated Ultisols

Author

Listed:
  • Duminda N. Vidana Gamage

    (Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka)

  • Thilanjana Peiris

    (Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka)

  • Isuru Kasthuriarachchi

    (Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka)

  • Keerthi M. Mohotti

    (Tea Research Institute, Talawakelle 22100, Sri Lanka)

  • Asim Biswas

    (School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada)

Abstract

This study examined the impact of the long-term application (25 years) of tea waste (TW), compost (COM), and neem oil cake (NOC) compared to conventional synthetic fertilizers (CONV) on soil thermal and physical properties of a tea-cultivated Ultisol. Soil samples were collected from 0–15 cm and 15–30 cm depths of an experimental site of the Tea Research Institute in Sri Lanka. These samples were analyzed for soil thermal conductivity (k), volumetric heat capacity (C), thermal diffusivity (D), bulk density (BD), aggregate stability, soil organic carbon (SOC), and volumetric water contents at 0 kPa (θ 0 ) and 10 kPa (θ 10 ). TW and COM significantly ( p < 0.05) increased surface SOC, leading to better aggregation, lower BD, and, consequently, a substantial reduction in k and D compared to CONV plots. Further, TW and COM amendments slightly increased C compared to CONV plots due to elevated SOC and water content. However, NOC had no impact on soil thermal and physical properties compared to CONV. The reduced thermal conductivity and thermal diffusivity indicated an improved soil capacity to buffer extreme temperature fluctuations. Moreover, soils treated with TW and COM exhibited greater water retention and improved soil resistance to erosion. The findings suggest that the long-term application of tea waste and compost could be a sustainable soil management strategy for improving soil health and enhancing resilience to climate change in tea-cultivated Ultisols.

Suggested Citation

  • Duminda N. Vidana Gamage & Thilanjana Peiris & Isuru Kasthuriarachchi & Keerthi M. Mohotti & Asim Biswas, 2025. "Enhancing Soil Resilience to Climate Change: Long-Term Effects of Organic Amendments on Soil Thermal and Physical Properties in Tea-Cultivated Ultisols," Sustainability, MDPI, vol. 17(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1184-:d:1581823
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ben Bond-Lamberty & Vanessa L. Bailey & Min Chen & Christopher M. Gough & Rodrigo Vargas, 2018. "Globally rising soil heterotrophic respiration over recent decades," Nature, Nature, vol. 560(7716), pages 80-83, August.
    2. Manuel Matisic & Ivan Dugan & Igor Bogunovic, 2024. "Challenges in Sustainable Agriculture—The Role of Organic Amendments," Agriculture, MDPI, vol. 14(4), pages 1-25, April.
    3. Ananda, Jayanath & Herath, Gamini & Chisholm, Anthony H., 2001. "Determination of yield and erosion damage functions using subjectively elicited data: application to smallholder tea in Sri Lanka," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 45(2), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Wei & Yalan Liu & Huimin Xiang & Jiaen Zhang & Saifei Li & Jiayue Yang, 2019. "Soil pH Responses to Simulated Acid Rain Leaching in Three Agricultural Soils," Sustainability, MDPI, vol. 12(1), pages 1-12, December.
    2. Jinshi Jian & Vanessa Bailey & Kalyn Dorheim & Alexandra G. Konings & Dalei Hao & Alexey N. Shiklomanov & Abigail Snyder & Meredith Steele & Munemasa Teramoto & Rodrigo Vargas & Ben Bond-Lamberty, 2022. "Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Pande, V.C. & Kurothe, R.S. & Singh, H.B. & Tiwari, S.P. & Kumar, Gopal & Rao, B.K. & Vishwakarma, A.K. & Bagdi, G.L., 2013. "Economic Assessment of Soil Erosion Damage on Smallholder Farms in Marginal Lands of Mahi Ravines in Gujarat," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 26(01), June.
    4. Xue Chen & Haibo Hu & Qi Wang & Xia Wang & Bing Ma, 2024. "Exploring the Factors Affecting Terrestrial Soil Respiration in Global Warming Manipulation Experiments Based on Meta-Analysis," Agriculture, MDPI, vol. 14(9), pages 1-15, September.
    5. Nur Hidayah Hamidi & Osumanu Haruna Ahmed & Latifah Omar & Huck Ywih Ch’ng & Prisca Divra Johan & Puvan Paramisparam & Mohamadu Boyie Jalloh, 2021. "Acid Soils Nitrogen Leaching and Buffering Capacity Mitigation Using Charcoal and Sago Bark Ash," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    6. Ee Ling Ng & Junling Zhang, 2019. "The Search for the Meaning of Soil Health: Lessons from Human Health and Ecosystem Health," Sustainability, MDPI, vol. 11(13), pages 1-6, July.
    7. Rousseau, Sandra & Telle, Kjetil, 2010. "On the existence of the optimal fine for environmental crime," International Review of Law and Economics, Elsevier, vol. 30(4), pages 329-337, December.
    8. Kailiang Yu & Philippe Ciais & Sonia I. Seneviratne & Zhihua Liu & Han Y. H. Chen & Jonathan Barichivich & Craig D. Allen & Hui Yang & Yuanyuan Huang & Ashley P. Ballantyne, 2022. "Field-based tree mortality constraint reduces estimates of model-projected forest carbon sinks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Charlotte J. Alster & Allycia Laar & Jordan P. Goodrich & Vickery L. Arcus & Julie R. Deslippe & Alexis J. Marshall & Louis A. Schipper, 2023. "Quantifying thermal adaptation of soil microbial respiration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Barrett, Christopher B. & Santos, Paulo, 2014. "The impact of changing rainfall variability on resource-dependent wealth dynamics," Ecological Economics, Elsevier, vol. 105(C), pages 48-54.
    11. Alon Nissan & Uria Alcolombri & Nadav Peleg & Nir Galili & Joaquin Jimenez-Martinez & Peter Molnar & Markus Holzner, 2023. "Global warming accelerates soil heterotrophic respiration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Ronan Connolly & Michael Connolly & Robert M. Carter & Willie Soon, 2020. "How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies? A Semi-Empirical Assessment," Energies, MDPI, vol. 13(6), pages 1-51, March.
    13. Pretty Mthiyane & Murat Aycan & Toshiaki Mitsui, 2024. "Integrating Biofertilizers with Organic Fertilizers Enhances Photosynthetic Efficiency and Upregulates Chlorophyll-Related Gene Expression in Rice," Sustainability, MDPI, vol. 16(21), pages 1-24, October.
    14. Grafström, Jonas & Sandström, Christian, 2021. "Ratio Working Paper No. 352: More from less? Economic growth and sustainability in Sweden," Ratio Working Papers 352, The Ratio Institute.
    15. Hongru Sun & Guangsheng Zhou & Zhenzhu Xu & Yuhui Wang & Xiaodi Liu & Hongying Yu & Quanhui Ma & Bingrui Jia, 2020. "Temperature sensitivity increases with decreasing soil carbon quality in forest ecosystems across northeast China," Climatic Change, Springer, vol. 160(3), pages 373-384, June.
    16. Egor A. Dyukarev & Sergey A. Kurakov, 2023. "Response of Bare Soil Respiration to Air and Soil Temperature Variations According to Different Models: A Case Study of an Urban Grassland," Land, MDPI, vol. 12(5), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1184-:d:1581823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.