IDEAS home Printed from https://ideas.repec.org/p/hhs/ratioi/0352.html
   My bibliography  Save this paper

Ratio Working Paper No. 352: More from less? Economic growth and sustainability in Sweden

Author

Listed:

Abstract

Can economic growth and environmental sustainability coexist? This book describes how emissions and use of natural resources has changed in Sweden over time. Since 1990, Sweden’s population has increased by more than 1.6 million and the economy has almost doubled. At the same time, environmentally harmful emissions, and the use of natural resources in many areas have decreased both in absolute and relative terms. CO2 emissions decreased by 27 percent between 1990 and 2018. Per GDP, CO2 saw a decline by 60 percent during the period. Consumption of water, electricity and energy has remained constant during this period, despite such an increase in GDP. Out of 26 measured pollutants, 24 had declined 1990-2018. The decline was on average 52 percent, and per GDP 77 percent. These results give cause for cautious optimism. If Sweden can combine a growing economy with an improved environment, other countries can follow.

Suggested Citation

  • Grafström, Jonas & Sandström, Christian, 2021. "Ratio Working Paper No. 352: More from less? Economic growth and sustainability in Sweden," Ratio Working Papers 352, The Ratio Institute.
  • Handle: RePEc:hhs:ratioi:0352
    Note: https://cms.ratio.se/app/uploads/2022/01/ratio-wp-352.pdf
    as

    Download full text from publisher

    File URL: https://cms.ratio.se/app/uploads/2022/01/ratio-wp-352.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grafström, Jonas & Lindman, Åsa, 2017. "Invention, innovation and diffusion in the European wind power sector," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 179-191.
    2. Joeri Rogelj & David L. McCollum & Andy Reisinger & Malte Meinshausen & Keywan Riahi, 2013. "Probabilistic cost estimates for climate change mitigation," Nature, Nature, vol. 493(7430), pages 79-83, January.
    3. Reichardt, Kristin & Rogge, Karoline, 2014. "How the policy mix and its consistency impact innovation: Findings from company case studies on offshore wind in Germany," Working Papers "Sustainability and Innovation" S7/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    4. Weyant, John P., 2011. "Accelerating the development and diffusion of new energy technologies: Beyond the "valley of death"," Energy Economics, Elsevier, vol. 33(4), pages 674-682, July.
    5. William J. Baumol, 2004. "Entrepreneurial Enterprises, Large Established Firms and Other Components of the Free-Market Growth Machine," Small Business Economics, Springer, vol. 23(1), pages 9-21, August.
    6. Mike Hulme, 2020. "Is it too late (to stop dangerous climate change)? An editorial," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(1), January.
    7. Jan F. Weiss & Tatiana Anisimova, 2019. "The innovation and performance effects of well-designed environmental regulation: evidence from Sweden," Industry and Innovation, Taylor & Francis Journals, vol. 26(5), pages 534-567, May.
    8. Susmita Dasgupta & Benoit Laplante & Hua Wang & David Wheeler, 2002. "Confronting the Environmental Kuznets Curve," Journal of Economic Perspectives, American Economic Association, vol. 16(1), pages 147-168, Winter.
    9. Simon Dietz & David Maddison, 2009. "New Frontiers in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 295-306, July.
    10. E. A. G. Schuur & A. D. McGuire & C. Schädel & G. Grosse & J. W. Harden & D. J. Hayes & G. Hugelius & C. D. Koven & P. Kuhry & D. M. Lawrence & S. M. Natali & D. Olefeldt & V. E. Romanovsky & K. Schae, 2015. "Climate change and the permafrost carbon feedback," Nature, Nature, vol. 520(7546), pages 171-179, April.
    11. Ben Bond-Lamberty & Vanessa L. Bailey & Min Chen & Christopher M. Gough & Rodrigo Vargas, 2018. "Globally rising soil heterotrophic respiration over recent decades," Nature, Nature, vol. 560(7716), pages 80-83, August.
    12. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    13. Luigi Aldieri & Jonas Grafström & Concetto Paolo Vinci, 2021. "The Effect of Marshallian and Jacobian Knowledge Spillovers on Jobs in the Solar, Wind and Energy Efficiency Sector," Energies, MDPI, vol. 14(14), pages 1-16, July.
    14. Wiser, Ryan & Millstein, Dev, 2020. "Evaluating the economic return to public wind energy research and development in the United States," Applied Energy, Elsevier, vol. 261(C).
    15. Isaksson, Lena Hoglund, 2005. "Abatement costs in response to the Swedish charge on nitrogen oxide emissions," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 102-120, July.
    16. Oecd, 2013. "The Swedish Tax on Nitrogen Oxide Emissions: Lessons in Environmental Policy Reform," OECD Environment Policy Papers 2, OECD Publishing.
    17. Julius J. Andersson, 2019. "Carbon Taxes and CO2 Emissions: Sweden as a Case Study," American Economic Journal: Economic Policy, American Economic Association, vol. 11(4), pages 1-30, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    2. Grafström, Jonas, 2021. "Ratio Working Paper No. 351: Knowledge Spillovers in the Solar energy sector," Ratio Working Papers 351, The Ratio Institute.
    3. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Hui Wei & Yalan Liu & Huimin Xiang & Jiaen Zhang & Saifei Li & Jiayue Yang, 2019. "Soil pH Responses to Simulated Acid Rain Leaching in Three Agricultural Soils," Sustainability, MDPI, vol. 12(1), pages 1-12, December.
    7. Missbach, Leonard & Steckel, Jan Christoph & Vogt-Schilb, Adrien, 2024. "Cash transfers in the context of carbon pricing reforms in Latin America and the Caribbean," World Development, Elsevier, vol. 173(C).
    8. Henrekson, Magnus & Johansson, Dan, 2010. "Firm Growth, Institutions and Structural Transformation," Ratio Working Papers 150, The Ratio Institute.
    9. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    10. Rohan Best & Paul J. Burke, 2020. "Energy mix persistence and the effect of carbon pricing," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 555-574, July.
    11. Kruse, Tobias & Atkinson, Giles, 2022. "Understanding public support for international climate adaptation payments: Evidence from a choice experiment," Ecological Economics, Elsevier, vol. 194(C).
    12. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    13. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    14. Yue, Shen & Munir, Irfan Ullah & Hyder, Shabir & Nassani, Abdelmohsen A. & Qazi Abro, Muhammad Moinuddin & Zaman, Khalid, 2020. "Sustainable food production, forest biodiversity and mineral pricing: Interconnected global issues," Resources Policy, Elsevier, vol. 65(C).
    15. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
    16. Katsuyuki Nakano & Ken Yamagishi, 2021. "Impact of Carbon Tax Increase on Product Prices in Japan," Energies, MDPI, vol. 14(7), pages 1-19, April.
    17. Hu, Jin-Li & Wang, Shih-Chuan & Yeh, Fang-Yu, 2006. "Total-factor water efficiency of regions in China," Resources Policy, Elsevier, vol. 31(4), pages 217-230, December.
    18. Francesco Nicolli & Francesco Vona & Lionel Nesta, 2012. "Determinants of Renewable Energy Innovation: Environmental Policies vs. Market Regulation," Working Papers 201204, University of Ferrara, Department of Economics.
    19. Adom, Philip Kofi & Bekoe, William, 2012. "Conditional dynamic forecast of electrical energy consumption requirements in Ghana by 2020: A comparison of ARDL and PAM," Energy, Elsevier, vol. 44(1), pages 367-380.
    20. Sebri, Maamar, 2009. "La Zone Méditerranéenne Face à la Pollution de L’air : Une Investigation Econométrique [The Mediterranean Zone in front of Air pollution: an Econometric Investigation]," MPRA Paper 32382, University Library of Munich, Germany.

    More about this item

    Keywords

    Economic growth; sustainability;

    JEL classification:

    • O10 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:ratioi:0352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin Korpi (email available below). General contact details of provider: https://edirc.repec.org/data/ratiose.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.