IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35773-6.html
   My bibliography  Save this article

Programmable frequency-bin quantum states in a nano-engineered silicon device

Author

Listed:
  • Marco Clementi

    (Università di Pavia
    Photonic Systems Laboratory (PHOSL), École Polytechnique Fédérale de Lausanne)

  • Federico Andrea Sabattoli

    (Università di Pavia
    Advanced Fiber Resources Milan S.r.L.)

  • Massimo Borghi

    (Università di Pavia)

  • Linda Gianini

    (Università di Pavia
    Univ. Grenoble Alpes, CEA-Leti)

  • Noemi Tagliavacche

    (Università di Pavia)

  • Houssein El Dirani

    (Univ. Grenoble Alpes, CEA-Leti
    LIGENTEC SA)

  • Laurene Youssef

    (Univ. Grenoble Alpes, CNRS, LTM
    Univ. Limoges, CNRS, IRCER, UMR 7315)

  • Nicola Bergamasco

    (Università di Pavia)

  • Camille Petit-Etienne

    (Univ. Grenoble Alpes, CNRS, LTM)

  • Erwine Pargon

    (Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec, Grenoble INP, LTM)

  • J. E. Sipe

    (University of Toronto)

  • Marco Liscidini

    (Università di Pavia)

  • Corrado Sciancalepore

    (Univ. Grenoble Alpes, CEA-Leti
    SOITEC SA, Parc technologique des Fontaines, Chemin des Franques)

  • Matteo Galli

    (Università di Pavia)

  • Daniele Bajoni

    (Università di Pavia)

Abstract

Photonic qubits should be controllable on-chip and noise-tolerant when transmitted over optical networks for practical applications. Furthermore, qubit sources should be programmable and have high brightness to be useful for quantum algorithms and grant resilience to losses. However, widespread encoding schemes only combine at most two of these properties. Here, we overcome this hurdle by demonstrating a programmable silicon nano-photonic chip generating frequency-bin entangled photons, an encoding scheme compatible with long-range transmission over optical links. The emitted quantum states can be manipulated using existing telecommunication components, including active devices that can be integrated in silicon photonics. As a demonstration, we show our chip can be programmed to generate the four computational basis states, and the four maximally-entangled Bell states, of a two-qubits system. Our device combines all the key properties of on-chip state reconfigurability and dense integration, while ensuring high brightness, fidelity, and purity.

Suggested Citation

  • Marco Clementi & Federico Andrea Sabattoli & Massimo Borghi & Linda Gianini & Noemi Tagliavacche & Houssein El Dirani & Laurene Youssef & Nicola Bergamasco & Camille Petit-Etienne & Erwine Pargon & J., 2023. "Programmable frequency-bin quantum states in a nano-engineered silicon device," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35773-6
    DOI: 10.1038/s41467-022-35773-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35773-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35773-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Kues & Christian Reimer & Piotr Roztocki & Luis Romero Cortés & Stefania Sciara & Benjamin Wetzel & Yanbing Zhang & Alfonso Cino & Sai T. Chu & Brent E. Little & David J. Moss & Lucia Caspani , 2017. "On-chip generation of high-dimensional entangled quantum states and their coherent control," Nature, Nature, vol. 546(7660), pages 622-626, June.
    2. J. W. Silverstone & R. Santagati & D. Bonneau & M. J. Strain & M. Sorel & J. L. O’Brien & M. G. Thompson, 2015. "Qubit entanglement between ring-resonator photon-pair sources on a silicon chip," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsuan-Hao Lu & Karthik V. Myilswamy & Ryan S. Bennink & Suparna Seshadri & Mohammed S. Alshaykh & Junqiu Liu & Tobias J. Kippenberg & Daniel E. Leaird & Andrew M. Weiner & Joseph M. Lukens, 2022. "Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Mujtaba Zahidy & Domenico Ribezzo & Claudia Lazzari & Ilaria Vagniluca & Nicola Biagi & Ronny Müller & Tommaso Occhipinti & Leif K. Oxenløwe & Michael Galili & Tetsuya Hayashi & Dajana Cassioli & Anto, 2024. "Practical high-dimensional quantum key distribution protocol over deployed multicore fiber," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    4. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Saket Kaushal & A. Aadhi & Anthony Roberge & Roberto Morandotti & Raman Kashyap & José Azaña, 2023. "All-fibre phase filters with 1-GHz resolution for high-speed passive optical logic processing," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Gheorghe Taran & Eufemio Moreno-Pineda & Michael Schulze & Edgar Bonet & Mario Ruben & Wolfgang Wernsdorfer, 2023. "Direct determination of high-order transverse ligand field parameters via µSQUID-EPR in a Et4N[160GdPc2] SMM," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Bereneice Sephton & Adam Vallés & Isaac Nape & Mitchell A. Cox & Fabian Steinlechner & Thomas Konrad & Juan P. Torres & Filippus S. Roux & Andrew Forbes, 2023. "Quantum transport of high-dimensional spatial information with a nonlinear detector," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35773-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.