IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v451y2008i7174d10.1038_nature06433.html
   My bibliography  Save this article

Magnetic monopoles in spin ice

Author

Listed:
  • C. Castelnovo

    (Rudolf Peierls Centre for Theoretical Physics, Oxford University)

  • R. Moessner

    (Rudolf Peierls Centre for Theoretical Physics, Oxford University
    Max-Planck-Institut für Physik komplexer Systeme)

  • S. L. Sondhi

    (Princeton University, Princeton, New Jersey 08544, USA)

Abstract

Poles apart We are familiar with elementary particles that carry either negative or positive electric charge, such as electrons and protons, but there is no evidence of elementary particles with a net magnetic charge. Magnets tend to come with inseparable north and south poles, and there are no known magnetic monopoles despite concerted efforts to find them. But an intriguing theoretical study now proposes that magnetic monopoles may exist, not as elementary particles, but as emergent particles in exotic condensed matter magnetic systems such as 'spin ice'. The theory, based on an analogy to fractional electric charges seen, for example, in quantum Hall systems in two dimensions, can explain a mysterious phase transition that has been observed experimentally in spin ice. The cover, by Alessandro Canossa, depicts a magnetic monopole (red sphere) emerging from break-up of the dipole moment (arrows) of the underlying electronic degrees of freedom in spin ice.

Suggested Citation

  • C. Castelnovo & R. Moessner & S. L. Sondhi, 2008. "Magnetic monopoles in spin ice," Nature, Nature, vol. 451(7174), pages 42-45, January.
  • Handle: RePEc:nat:nature:v:451:y:2008:i:7174:d:10.1038_nature06433
    DOI: 10.1038/nature06433
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature06433
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature06433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Guo & P. Ghosh & D. Hill & Y. Chen & L. Stingaciu & P. Zolnierczuk & C. A. Ullrich & D. K. Singh, 2023. "Persistent dynamic magnetic state in artificial honeycomb spin ice," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    2. Han Zhang & Chengkun Xing & Kyle Noordhoek & Zhaoyu Liu & Tianhao Zhao & Lukas Horák & Qing Huang & Lin Hao & Junyi Yang & Shashi Pandey & Elbio Dagotto & Zhigang Jiang & Jiun-Haw Chu & Yan Xin & Eun , 2023. "Anomalous magnetoresistance by breaking ice rule in Bi2Ir2O7/Dy2Ti2O7 heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Robert Puttock & Ingrid M. Andersen & Christophe Gatel & Bumsu Park & Mark C. Rosamond & Etienne Snoeck & Olga Kazakova, 2022. "Defect-induced monopole injection and manipulation in artificial spin ice," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Michael Saccone & Francesco Caravelli & Kevin Hofhuis & Scott Dhuey & Andreas Scholl & Cristiano Nisoli & Alan Farhan, 2023. "Real-space observation of ergodicity transitions in artificial spin ice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Alejandro Lopez-Bezanilla & Jack Raymond & Kelly Boothby & Juan Carrasquilla & Cristiano Nisoli & Andrew D. King, 2023. "Kagome qubit ice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. M. J. Pearce & K. Götze & A. Szabó & T. S. Sikkenk & M. R. Lees & A. T. Boothroyd & D. Prabhakaran & C. Castelnovo & P. A. Goddard, 2022. "Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Xiaoyu Zhang & Ayhan Duzgun & Yuyang Lao & Shayaan Subzwari & Nicholas S. Bingham & Joseph Sklenar & Hilal Saglam & Justin Ramberger & Joseph T. Batley & Justin D. Watts & Daniel Bromley & Rajesh V. C, 2021. "String Phase in an Artificial Spin Ice," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    8. Cisternas, Jaime & Concha, Andrés, 2024. "Searching nontrivial magnetic equilibria using the deflated Newton method," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:451:y:2008:i:7174:d:10.1038_nature06433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.