IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31309-0.html
   My bibliography  Save this article

Defect-induced monopole injection and manipulation in artificial spin ice

Author

Listed:
  • Robert Puttock

    (National Physical Laboratory)

  • Ingrid M. Andersen

    (Centre d’Elaboration de Materiaux et d’Etudes Structurales)

  • Christophe Gatel

    (Centre d’Elaboration de Materiaux et d’Etudes Structurales)

  • Bumsu Park

    (Centre d’Elaboration de Materiaux et d’Etudes Structurales)

  • Mark C. Rosamond

    (University of Leeds)

  • Etienne Snoeck

    (Centre d’Elaboration de Materiaux et d’Etudes Structurales)

  • Olga Kazakova

    (National Physical Laboratory)

Abstract

Lithographically defined arrays of nanomagnets are well placed for application in areas such as probabilistic computing or reconfigurable magnonics due to their emergent collective dynamics and writable magnetic order. Among them are artificial spin ice (ASI), which are arrays of binary in-plane macrospins exhibiting geometric frustration at the vertex interfaces. Macrospin flips in the arrays create topologically protected magnetic charges, or emergent monopoles, which are bound to an antimonopole to conserve charge. In the absence of controllable pinning, it is difficult to manipulate individual monopoles in the array without also influencing other monopole excitations or the counter-monopole charge. Here, we tailor the local magnetic order of a classic ASI lattice by introducing a ferromagnetic defect with shape anisotropy into the array. This creates monopole injection sites at nucleation fields below the critical lattice switching field. Once formed, the high energy monopoles are fixed to the defect site and may controllably propagate through the lattice under stimulation. Defect programing of bound monopoles within the array allows fine control of the pathways of inverted macrospins. Such control is a necessary prerequisite for the realization of functional devices, e. g. reconfigurable waveguide in nanomagnonic applications.

Suggested Citation

  • Robert Puttock & Ingrid M. Andersen & Christophe Gatel & Bumsu Park & Mark C. Rosamond & Etienne Snoeck & Olga Kazakova, 2022. "Defect-induced monopole injection and manipulation in artificial spin ice," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31309-0
    DOI: 10.1038/s41467-022-31309-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31309-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31309-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yann Perrin & Benjamin Canals & Nicolas Rougemaille, 2016. "Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice," Nature, Nature, vol. 540(7633), pages 410-413, December.
    2. C. Castelnovo & R. Moessner & S. L. Sondhi, 2008. "Magnetic monopoles in spin ice," Nature, Nature, vol. 451(7174), pages 42-45, January.
    3. D. F. Bowman & E. Cemal & T. Lehner & A. R. Wildes & L. Mangin-Thro & G. J. Nilsen & M. J. Gutmann & D. J. Voneshen & D. Prabhakaran & A. T. Boothroyd & D. G. Porter & C. Castelnovo & K. Refson & J. P, 2019. "Role of defects in determining the magnetic ground state of ytterbium titanate," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Saccone & Francesco Caravelli & Kevin Hofhuis & Scott Dhuey & Andreas Scholl & Cristiano Nisoli & Alan Farhan, 2023. "Real-space observation of ergodicity transitions in artificial spin ice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Alejandro Lopez-Bezanilla & Jack Raymond & Kelly Boothby & Juan Carrasquilla & Cristiano Nisoli & Andrew D. King, 2023. "Kagome qubit ice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. J. Guo & P. Ghosh & D. Hill & Y. Chen & L. Stingaciu & P. Zolnierczuk & C. A. Ullrich & D. K. Singh, 2023. "Persistent dynamic magnetic state in artificial honeycomb spin ice," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    4. Xiaoyu Zhang & Ayhan Duzgun & Yuyang Lao & Shayaan Subzwari & Nicholas S. Bingham & Joseph Sklenar & Hilal Saglam & Justin Ramberger & Joseph T. Batley & Justin D. Watts & Daniel Bromley & Rajesh V. C, 2021. "String Phase in an Artificial Spin Ice," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Han Zhang & Chengkun Xing & Kyle Noordhoek & Zhaoyu Liu & Tianhao Zhao & Lukas Horák & Qing Huang & Lin Hao & Junyi Yang & Shashi Pandey & Elbio Dagotto & Zhigang Jiang & Jiun-Haw Chu & Yan Xin & Eun , 2023. "Anomalous magnetoresistance by breaking ice rule in Bi2Ir2O7/Dy2Ti2O7 heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Wenjie Hu & Zefeng Zhang & Yanghui Liao & Qiang Li & Yang Shi & Huanyu Zhang & Xumeng Zhang & Chang Niu & Yu Wu & Weichao Yu & Xiaodong Zhou & Hangwen Guo & Wenbin Wang & Jiang Xiao & Lifeng Yin & Qi , 2023. "Distinguishing artificial spin ice states using magnetoresistance effect for neuromorphic computing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. M. J. Pearce & K. Götze & A. Szabó & T. S. Sikkenk & M. R. Lees & A. T. Boothroyd & D. Prabhakaran & C. Castelnovo & P. A. Goddard, 2022. "Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Cisternas, Jaime & Concha, Andrés, 2024. "Searching nontrivial magnetic equilibria using the deflated Newton method," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    9. Chao Yun & Zhongyu Liang & Aleš Hrabec & Zhentao Liu & Mantao Huang & Leran Wang & Yifei Xiao & Yikun Fang & Wei Li & Wenyun Yang & Yanglong Hou & Jinbo Yang & Laura J. Heyderman & Pietro Gambardella , 2023. "Electrically programmable magnetic coupling in an Ising network exploiting solid-state ionic gating," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31309-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.