IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v399y1999i6736d10.1038_21181.html
   My bibliography  Save this article

Poleward shifts in geographical ranges of butterfly species associated with regional warming

Author

Listed:
  • Camille Parmesan

    (National Center for Ecological Analysis and Synthesis
    University of Texas)

  • Nils Ryrholm

    (Evolutionary Biology Centre, Section of Zoological Ecology, Uppsala University)

  • Constantí Stefanescu

    (Butterfly Monitoring Scheme, Can Liro)

  • Jane K. Hill

    (Environmental Research Centre, University of Durham)

  • Chris D. Thomas

    (Centre for Biodiversity and Conservation, School of Biology, University of Leeds)

  • Henri Descimon

    (Laboratoire de Systématique Évolutive, Université de Provence)

  • Brian Huntley

    (Environmental Research Centre, University of Durham)

  • Lauri Kaila

    (Finnish Museum of Natural History, University of Helsinki)

  • Jaakko Kullberg

    (Finnish Museum of Natural History, University of Helsinki)

  • Toomas Tammaru

    (Institute of Zoology and Botany, Estonian Agricultural University)

  • W. John Tennent

    (Biogeography and Conservation Laboratory, The Natural History Museum (BMNH))

  • Jeremy A. Thomas

    (Furzebrook Research Station, Institute of Terrestrial Ecology)

  • Martin Warren

    (Butterfly Conservation)

Abstract

Mean global temperatures have risen this century, and further warming is predicted to continue for the next 50–100 years1,2,3. Some migratory species can respond rapidly to yearly climate variation by altering the timing or destination of migration4, but most wildlife is sedentary and so is incapable of such a rapid response. For these species, responses to the warming trend should be slower, reflected in poleward shifts of the range. Such changes in distribution would occur at the level of the population, stemming not from changes in the pattern of individuals' movements, but from changes in the ratios of extinctions to colonizations at the northern and southern boundaries of the range. A northward range shift therefore occurs when there is net extinction at the southern boundary or net colonization at the northern boundary. However, previous evidence has been limited to a single species5 or to only a portion of the species' range6,7. Here we provide the first large-scale evidence of poleward shifts in entire species' ranges. In a sample of 35 non-migratory European butterflies, 63% have ranges that have shifted to the north by 35–240 km during this century, and only 3% have shifted to the south.

Suggested Citation

  • Camille Parmesan & Nils Ryrholm & Constantí Stefanescu & Jane K. Hill & Chris D. Thomas & Henri Descimon & Brian Huntley & Lauri Kaila & Jaakko Kullberg & Toomas Tammaru & W. John Tennent & Jeremy A. , 1999. "Poleward shifts in geographical ranges of butterfly species associated with regional warming," Nature, Nature, vol. 399(6736), pages 579-583, June.
  • Handle: RePEc:nat:nature:v:399:y:1999:i:6736:d:10.1038_21181
    DOI: 10.1038/21181
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/21181
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/21181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhang & Zhinong Jing & Zuyao Li & Yang Liu & Shengzuo Fang, 2019. "Predictive Modeling of Suitable Habitats for Cinnamomum Camphora (L.) Presl Using Maxent Model under Climate Change in China," IJERPH, MDPI, vol. 16(17), pages 1-16, August.
    2. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    3. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    4. Haruka Ohashi & Tomoko Hasegawa & Akiko Hirata & Shinichiro Fujimori & Kiyoshi Takahashi & Ikutaro Tsuyama & Katsuhiro Nakao & Yuji Kominami & Nobuyuki Tanaka & Yasuaki Hijioka & Tetsuya Matsui, 2019. "Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Lucy R. Mason & Rhys E. Green & Christine Howard & Philip A. Stephens & Stephen G. Willis & Ainars Aunins & Lluís Brotons & Tomasz Chodkiewicz & Przemysław Chylarecki & Virginia Escandell & Ruud P. B., 2019. "Population responses of bird populations to climate change on two continents vary with species’ ecological traits but not with direction of change in climate suitability," Climatic Change, Springer, vol. 157(3), pages 337-354, December.
    6. Kaisa Heimonen & Anu Valtonen & Sari Kontunen-Soppela & Sarita Keski-Saari & Matti Rousi & Elina Oksanen & Heikki Roininen, 2015. "Insect herbivore damage on latitudinally translocated silver birch (Betula pendula) – predicting the effects of climate change," Climatic Change, Springer, vol. 131(2), pages 245-257, July.
    7. Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
    8. Rinnan, D. Scott, 2018. "Population persistence in the face of climate change and competition: A battle on two fronts," Ecological Modelling, Elsevier, vol. 385(C), pages 78-88.
    9. Mariana García Criado & Isla H. Myers-Smith & Anne D. Bjorkman & Signe Normand & Anne Blach-Overgaard & Haydn J. D. Thomas & Anu Eskelinen & Konsta Happonen & Juha M. Alatalo & Alba Anadon-Rosell & Is, 2023. "Plant traits poorly predict winner and loser shrub species in a warming tundra biome," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Hemalatha Palanivel & Shipra Shah, 2021. "Unlocking the inherent potential of plant genetic resources: food security and climate adaptation strategy in Fiji and the Pacific," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14264-14323, October.
    11. Takuya Iwamura & Kerrie A Wilson & Oscar Venter & Hugh P Possingham, 2010. "A Climatic Stability Approach to Prioritizing Global Conservation Investments," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    12. Chaianunporn, Thotsapol & Hovestadt, Thomas, 2012. "Concurrent evolution of random dispersal and habitat niche width in host-parasitoid systems," Ecological Modelling, Elsevier, vol. 247(C), pages 241-250.
    13. Asma Bourougaaoui & Mohamed L. Ben Jamâa & Christelle Robinet, 2021. "Has North Africa turned too warm for a Mediterranean forest pest because of climate change?," Climatic Change, Springer, vol. 165(3), pages 1-20, April.
    14. Ernesto Azzurro & Paula Moschella & Francesc Maynou, 2011. "Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    15. Floris M. Beest & Efrén López-Blanco & Lars H. Hansen & Niels M. Schmidt, 2023. "Extreme shifts in habitat suitability under contemporary climate change for a high-Arctic herbivore," Climatic Change, Springer, vol. 176(4), pages 1-14, April.
    16. German Forero-Medina & John Terborgh & S Jacob Socolar & Stuart L Pimm, 2011. "Elevational Ranges of Birds on a Tropical Montane Gradient Lag behind Warming Temperatures," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-5, December.
    17. Daniel K Gibson-Reinemer & Frank J Rahel, 2015. "Inconsistent Range Shifts within Species Highlight Idiosyncratic Responses to Climate Warming," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-15, July.
    18. Bezerra, Antonio Diego M. & Pacheco Filho, Alípio J.S. & Bomfim, Isac G.A. & Smagghe, Guy & Freitas, Breno M., 2019. "Agricultural area losses and pollinator mismatch due to climate changes endanger passion fruit production in the Neotropics," Agricultural Systems, Elsevier, vol. 169(C), pages 49-57.
    19. Anja Jaeschke & Torsten Bittner & Anke Jentsch & Björn Reineking & Helmut Schlumprecht & Carl Beierkuhnlein, 2012. "Biotic Interactions in the Face of Climate Change: A Comparison of Three Modelling Approaches," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-10, December.
    20. Dubravka Milić & Snežana Radenković & Dimitrije Radišić & Andrijana Andrić & Tijana Nikolić & Ante Vujić, 2019. "Stability and changes in the distribution of Pipiza hoverflies (Diptera, Syrphidae) in Europe under projected future climate conditions," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-19, September.
    21. Jayaraman, T., 2011. "Climate Change and Agriculture: A Review Article with Special Reference to India," Review of Agrarian Studies, Foundation for Agrarian Studies, vol. 1(2), December.
    22. Sabrina Kumschick & Stefan Fronzek & Martin Entling & Wolfgang Nentwig, 2011. "Rapid spread of the wasp spider Argiope bruennichi across Europe: a consequence of climate change?," Climatic Change, Springer, vol. 109(3), pages 319-329, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:399:y:1999:i:6736:d:10.1038_21181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.