IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v399y1999i6733d10.1038_20335.html
   My bibliography  Save this article

Birds extend their ranges northwards

Author

Listed:
  • Chris D. Thomas

    (Centre for Biodiversity and Conservation, School of Biology, University of Leeds)

  • Jack J. Lennon

    (Centre for Biodiversity and Conservation, School of Biology, University of Leeds)

Abstract

We have analysed the breeding distributions of British birds over a 20-year period. After controlling for overall population expansions and retractions, we find that the northern margins of many species have moved further north by an average of 18.9 km during this time. This general northward shift took place during a period of climatic warming, which we propose might be causally involved.

Suggested Citation

  • Chris D. Thomas & Jack J. Lennon, 1999. "Birds extend their ranges northwards," Nature, Nature, vol. 399(6733), pages 213-213, May.
  • Handle: RePEc:nat:nature:v:399:y:1999:i:6733:d:10.1038_20335
    DOI: 10.1038/20335
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/20335
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/20335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    2. Urtzi Enriquez-Urzelai & Nicola Bernardo & Gregorio Moreno-Rueda & Albert Montori & Gustavo Llorente, 2019. "Are amphibians tracking their climatic niches in response to climate warming? A test with Iberian amphibians," Climatic Change, Springer, vol. 154(1), pages 289-301, May.
    3. Tae-Sung Kwon & Cheol Lee & Sung-Soo Kim, 2014. "Northward range shifts in Korean butterflies," Climatic Change, Springer, vol. 126(1), pages 163-174, September.
    4. Asma Bourougaaoui & Mohamed L. Ben Jamâa & Christelle Robinet, 2021. "Has North Africa turned too warm for a Mediterranean forest pest because of climate change?," Climatic Change, Springer, vol. 165(3), pages 1-20, April.
    5. Antoine Adde & Diana Stralberg & Travis Logan & Christine Lepage & Steven Cumming & Marcel Darveau, 2020. "Projected effects of climate change on the distribution and abundance of breeding waterfowl in Eastern Canada," Climatic Change, Springer, vol. 162(4), pages 2339-2358, October.
    6. German Forero-Medina & John Terborgh & S Jacob Socolar & Stuart L Pimm, 2011. "Elevational Ranges of Birds on a Tropical Montane Gradient Lag behind Warming Temperatures," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-5, December.
    7. Manica, Mattia & Rosà , Roberto & Pugliese, Andrea & Bolzoni, Luca, 2013. "Exclusion and spatial segregation in the apparent competition between two hosts sharing macroparasites," Theoretical Population Biology, Elsevier, vol. 86(C), pages 12-22.
    8. Lucy R. Mason & Rhys E. Green & Christine Howard & Philip A. Stephens & Stephen G. Willis & Ainars Aunins & Lluís Brotons & Tomasz Chodkiewicz & Przemysław Chylarecki & Virginia Escandell & Ruud P. B., 2019. "Population responses of bird populations to climate change on two continents vary with species’ ecological traits but not with direction of change in climate suitability," Climatic Change, Springer, vol. 157(3), pages 337-354, December.
    9. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    10. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    11. Tian, Huaiyu & Zhou, Sen & Dong, Lu & Van Boeckel, Thomas P. & Pei, Yao & Wu, Qizhong & Yuan, Wenping & Guo, Yan & Huang, Shanqian & Chen, Wenhuan & Lu, Xueliang & Liu, Zhen & Bai, Yuqi & Yue, Tianxia, 2015. "Climate change suggests a shift of H5N1 risk in migratory birds," Ecological Modelling, Elsevier, vol. 306(C), pages 6-15.
    12. Maria Triviño & Wilfried Thuiller & Mar Cabeza & Thomas Hickler & Miguel B Araújo, 2011. "The Contribution of Vegetation and Landscape Configuration for Predicting Environmental Change Impacts on Iberian Birds," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-10, December.
    13. Conor C. Taff & J. Ryan. Shipley, 2023. "Inconsistent shifts in warming and temperature variability are linked to reduced avian fitness," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Ernesto Azzurro & Paula Moschella & Francesc Maynou, 2011. "Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    15. Rong Fan & Jialin Lei & Entao Wu & Cai Lu & Yifei Jia & Qing Zeng & Guangchun Lei, 2022. "Species Distribution Modeling of the Breeding Site Distribution and Conservation Gaps of Lesser White-Fronted Goose in Siberia under Climate Change," Land, MDPI, vol. 11(11), pages 1-21, October.
    16. Watts, Michael J. & Fordham, Damien A. & Akçakaya, H. Resit & Aiello-Lammens, Matthew E. & Brook, Barry W., 2013. "Tracking shifting range margins using geographical centroids of metapopulations weighted by population density," Ecological Modelling, Elsevier, vol. 269(C), pages 61-69.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:399:y:1999:i:6733:d:10.1038_20335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.