IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v126y2014i1p163-174.html
   My bibliography  Save this article

Northward range shifts in Korean butterflies

Author

Listed:
  • Tae-Sung Kwon
  • Cheol Lee
  • Sung-Soo Kim

Abstract

Northward shifts due to global warming are apparent in various organisms in the Northern Hemisphere such as insects, fish, birds, and plants. However, these findings were mainly reported in Europe and North America. Therefore, such range shifts should be examined in other regions such as Asia to confirm global northward shifts in the Northern Hemisphere. In South Korea, we tested whether the distribution margins of Korean butterflies shifted northward or southward. We used occurrence data from two Korean butterfly atlases (1938-1950 and 1996-2011). The margin (northern or southern) shifts were evaluated using both latitudinal shifts of margin records (direct evaluation) and the intercept shift in the regression equation between the margin shift and the change in occurrence (intercept evaluation). Northern margins of southern species shifted northwards, whereas southern margins of northern species shifted southwards due to habitat enlargement (national reforestation in South Korea). The annual northward shift of northern margins of 10 Korean southern species was 1.6 km for 60 years, which is similar to the Korean isothermal shift (1.5 km per year). Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Tae-Sung Kwon & Cheol Lee & Sung-Soo Kim, 2014. "Northward range shifts in Korean butterflies," Climatic Change, Springer, vol. 126(1), pages 163-174, September.
  • Handle: RePEc:spr:climat:v:126:y:2014:i:1:p:163-174
    DOI: 10.1007/s10584-014-1212-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1212-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1212-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris D. Thomas & Jack J. Lennon, 1999. "Birds extend their ranges northwards," Nature, Nature, vol. 399(6733), pages 213-213, May.
    2. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernesto Azzurro & Paula Moschella & Francesc Maynou, 2011. "Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    2. German Forero-Medina & John Terborgh & S Jacob Socolar & Stuart L Pimm, 2011. "Elevational Ranges of Birds on a Tropical Montane Gradient Lag behind Warming Temperatures," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-5, December.
    3. Lucy R. Mason & Rhys E. Green & Christine Howard & Philip A. Stephens & Stephen G. Willis & Ainars Aunins & Lluís Brotons & Tomasz Chodkiewicz & Przemysław Chylarecki & Virginia Escandell & Ruud P. B., 2019. "Population responses of bird populations to climate change on two continents vary with species’ ecological traits but not with direction of change in climate suitability," Climatic Change, Springer, vol. 157(3), pages 337-354, December.
    4. Manica, Mattia & Rosà , Roberto & Pugliese, Andrea & Bolzoni, Luca, 2013. "Exclusion and spatial segregation in the apparent competition between two hosts sharing macroparasites," Theoretical Population Biology, Elsevier, vol. 86(C), pages 12-22.
    5. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    6. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    7. Rong Fan & Jialin Lei & Entao Wu & Cai Lu & Yifei Jia & Qing Zeng & Guangchun Lei, 2022. "Species Distribution Modeling of the Breeding Site Distribution and Conservation Gaps of Lesser White-Fronted Goose in Siberia under Climate Change," Land, MDPI, vol. 11(11), pages 1-21, October.
    8. Urtzi Enriquez-Urzelai & Nicola Bernardo & Gregorio Moreno-Rueda & Albert Montori & Gustavo Llorente, 2019. "Are amphibians tracking their climatic niches in response to climate warming? A test with Iberian amphibians," Climatic Change, Springer, vol. 154(1), pages 289-301, May.
    9. Asma Bourougaaoui & Mohamed L. Ben Jamâa & Christelle Robinet, 2021. "Has North Africa turned too warm for a Mediterranean forest pest because of climate change?," Climatic Change, Springer, vol. 165(3), pages 1-20, April.
    10. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    11. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    12. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    13. Hao Wang & Guohua Liu & Zongshan Li & Xin Ye & Bojie Fu & Yihe Lü, 2017. "Analysis of the Driving Forces in Vegetation Variation in the Grain for Green Program Region, China," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    14. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    15. Portalier, S.M.J. & Candau, J.-N. & Lutscher, F., 2024. "Larval mortality from phenological mismatch can affect outbreak frequency and severity of a boreal forest defoliator," Ecological Modelling, Elsevier, vol. 493(C).
    16. A. Ogden & J. Innes, 2008. "Climate change adaptation and regional forest planning in southern Yukon, Canada," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(8), pages 833-861, October.
    17. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    18. Prem B. Parajuli & Priyantha Jayakody & Ying Ouyang, 2018. "Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 985-996, February.
    19. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    20. Debora Sotto & Arlindo Philippi & Tan Yigitcanlar & Md Kamruzzaman, 2019. "Aligning Urban Policy with Climate Action in the Global South: Are Brazilian Cities Considering Climate Emergency in Local Planning Practice?," Energies, MDPI, vol. 12(18), pages 1-31, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:126:y:2014:i:1:p:163-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.