IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v8y2024i4d10.1038_s41562-024-01820-z.html
   My bibliography  Save this article

Causal phase-dependent control of non-spatial attention in human prefrontal cortex

Author

Listed:
  • Jeroen Brus

    (ETH Zurich
    Neuroscience Center Zurich)

  • Joseph A. Heng

    (ETH Zurich
    Neuroscience Center Zurich)

  • Valeriia Beliaeva

    (ETH Zurich
    Neuroscience Center Zurich)

  • Fabian Gonzalez Pinto

    (ETH Zurich
    Neuroscience Center Zurich)

  • Antonino Mario Cassarà

    (Foundation for Research on Information Technologies in Society (IT’IS))

  • Esra Neufeld

    (Foundation for Research on Information Technologies in Society (IT’IS))

  • Marcus Grueschow

    (University of Zurich)

  • Lukas Imbach

    (Swiss Epilepsy Center (Klinik Lengg))

  • Rafael Polanía

    (ETH Zurich
    Neuroscience Center Zurich)

Abstract

Non-spatial attention is a fundamental cognitive mechanism that allows organisms to orient the focus of conscious awareness towards sensory information that is relevant to a behavioural goal while shifting it away from irrelevant stimuli. It has been suggested that attention is regulated by the ongoing phase of slow excitability fluctuations of neural activity in the prefrontal cortex, a hypothesis that has been challenged with no consensus. Here we developed a behavioural and non-invasive stimulation paradigm aiming at modulating slow excitability fluctuations of the inferior frontal junction. Using this approach, we show that non-spatial attention can be selectively modulated as a function of the ongoing phase of exogenously modulated excitability states of this brain structure. These results demonstrate that non-spatial attention relies on ongoing prefrontal excitability states, which are probably regulated by slow oscillatory dynamics, that orchestrate goal-oriented behaviour.

Suggested Citation

  • Jeroen Brus & Joseph A. Heng & Valeriia Beliaeva & Fabian Gonzalez Pinto & Antonino Mario Cassarà & Esra Neufeld & Marcus Grueschow & Lukas Imbach & Rafael Polanía, 2024. "Causal phase-dependent control of non-spatial attention in human prefrontal cortex," Nature Human Behaviour, Nature, vol. 8(4), pages 743-757, April.
  • Handle: RePEc:nat:nathum:v:8:y:2024:i:4:d:10.1038_s41562-024-01820-z
    DOI: 10.1038/s41562-024-01820-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-024-01820-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-024-01820-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew F. Panichello & Timothy J. Buschman, 2021. "Shared mechanisms underlie the control of working memory and attention," Nature, Nature, vol. 592(7855), pages 601-605, April.
    2. Stefan Treue & Julio C. Martínez Trujillo, 1999. "Feature-based attention influences motion processing gain in macaque visual cortex," Nature, Nature, vol. 399(6736), pages 575-579, June.
    3. Boateng Asamoah & Ahmad Khatoun & Myles Mc Laughlin, 2019. "tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    4. Valeriia Beliaeva & Iurii Savvateev & Valerio Zerbi & Rafael Polania, 2021. "Toward integrative approaches to study the causal role of neural oscillations via transcranial electrical stimulation," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Geoffrey Brookshire, 2022. "Putative rhythms in attentional switching can be explained by aperiodic temporal structure," Nature Human Behaviour, Nature, vol. 6(9), pages 1280-1291, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baiwei Liu & Anna C. Nobre & Freek van Ede, 2022. "Functional but not obligatory link between microsaccades and neural modulation by covert spatial attention," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Vladislav Kozyrev & Mohammad Reza Daliri & Philipp Schwedhelm & Stefan Treue, 2019. "Strategic deployment of feature-based attentional gain in primate visual cortex," PLOS Biology, Public Library of Science, vol. 17(8), pages 1-28, August.
    3. Nicole M. Long, 2023. "The intersection of the retrieval state and internal attention," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Robert G. Alexander & Stephen L. Macknik & Susana Martinez-Conde, 2022. "What the Neuroscience and Psychology of Magic Reveal about Misinformation," Publications, MDPI, vol. 10(4), pages 1-19, September.
    5. Xaq Pitkow & Haim Sompolinsky & Markus Meister, 2007. "A Neural Computation for Visual Acuity in the Presence of Eye Movements," PLOS Biology, Public Library of Science, vol. 5(12), pages 1-14, December.
    6. Rong J. B. Zhu & Xue-Xin Wei, 2023. "Unsupervised approach to decomposing neural tuning variability," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Elizabeth L. Johnson & Jack J. Lin & David King-Stephens & Peter B. Weber & Kenneth D. Laxer & Ignacio Saez & Fady Girgis & Mark D’Esposito & Robert T. Knight & David Badre, 2023. "A rapid theta network mechanism for flexible information encoding," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Kei Watanabe & Mikiko Kadohisa & Makoto Kusunoki & Mark J. Buckley & John Duncan, 2023. "Cycles of goal silencing and reactivation underlie complex problem-solving in primate frontal and parietal cortex," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Huee Ru Chong & Yadollah Ranjbar-Slamloo & Malcolm Zheng Hao Ho & Xuan Ouyang & Tsukasa Kamigaki, 2023. "Functional alterations of the prefrontal circuit underlying cognitive aging in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Mehrabbeik, Mahtab & Shams-Ahmar, Mohammad & Levine, Alexandra T. & Jafari, Sajad & Merrikhi, Yaser, 2022. "Distinctive nonlinear dimensionality of neural spiking activity in extrastriate cortex during spatial working memory; a Higuchi fractal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Mikael Lundqvist & Scott L. Brincat & Jonas Rose & Melissa R. Warden & Timothy J. Buschman & Earl K. Miller & Pawel Herman, 2023. "Working memory control dynamics follow principles of spatial computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Joao Barbosa & Rémi Proville & Chris C. Rodgers & Michael R. DeWeese & Srdjan Ostojic & Yves Boubenec, 2023. "Early selection of task-relevant features through population gating," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Miles Wischnewski & Harry Tran & Zhihe Zhao & Sina Shirinpour & Zachary J. Haigh & Jonna Rotteveel & Nipun D. Perera & Ivan Alekseichuk & Jan Zimmermann & Alexander Opitz, 2024. "Induced neural phase precession through exogenous electric fields," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. George Loewenstein & Zachary Wojtowicz, 2023. "The Economics of Attention," CESifo Working Paper Series 10712, CESifo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:8:y:2024:i:4:d:10.1038_s41562-024-01820-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.