IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/3000387.html
   My bibliography  Save this article

Strategic deployment of feature-based attentional gain in primate visual cortex

Author

Listed:
  • Vladislav Kozyrev
  • Mohammad Reza Daliri
  • Philipp Schwedhelm
  • Stefan Treue

Abstract

Attending to visual stimuli enhances the gain of those neurons in primate visual cortex that preferentially respond to the matching locations and features (on-target gain). Although this is well suited to enhance the neuronal representation of attended stimuli, it is nonoptimal under difficult discrimination conditions, as in the presence of similar distractors. In such cases, directing attention to neighboring neuronal populations (off-target gain) has been shown to be the most efficient strategy, but although such a strategic deployment of attention has been shown behaviorally, its underlying neural mechanisms are unknown. Here, we investigated how attention affects the population responses of neurons in the middle temporal (MT) visual area of rhesus monkeys to bidirectional movement inside the neurons’ receptive field (RF). The monkeys were trained to focus their attention onto the fixation spot or to detect a direction or speed change in one of the motion directions (the “target”), ignoring the distractor motion. Population activity profiles were determined by systematically varying the patterns’ directions while maintaining a constant angle between them. As expected, the response profiles show a peak for each of the 2 motion directions. Switching spatial attention from the fixation spot into the RF enhanced the peak representing the attended stimulus and suppressed the distractor representation. Importantly, the population data show a direction-dependent attentional modulation that does not peak at the target feature but rather along the slopes of the activity profile representing the target direction. Our results show that attentional gains are strategically deployed to optimize the discriminability of target stimuli, in line with an optimal gain mechanism proposed by Navalpakkam and Itti.This study documents the neural basis of a sophisticated attentional system that is able to differentially distribute feature-based attention such that the strongest attentional modulation is directed towards those neurons that are the most informative contributors to the task at hand.

Suggested Citation

  • Vladislav Kozyrev & Mohammad Reza Daliri & Philipp Schwedhelm & Stefan Treue, 2019. "Strategic deployment of feature-based attentional gain in primate visual cortex," PLOS Biology, Public Library of Science, vol. 17(8), pages 1-28, August.
  • Handle: RePEc:plo:pbio00:3000387
    DOI: 10.1371/journal.pbio.3000387
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000387
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3000387&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.3000387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefan Treue & Julio C. Martínez Trujillo, 1999. "Feature-based attention influences motion processing gain in macaque visual cortex," Nature, Nature, vol. 399(6736), pages 575-579, June.
    2. Markus Helmer & Vladislav Kozyrev & Valeska Stephan & Stefan Treue & Theo Geisel & Demian Battaglia, 2016. "Model-Free Estimation of Tuning Curves and Their Attentional Modulation, Based on Sparse and Noisy Data," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-33, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert G. Alexander & Stephen L. Macknik & Susana Martinez-Conde, 2022. "What the Neuroscience and Psychology of Magic Reveal about Misinformation," Publications, MDPI, vol. 10(4), pages 1-19, September.
    2. Xaq Pitkow & Haim Sompolinsky & Markus Meister, 2007. "A Neural Computation for Visual Acuity in the Presence of Eye Movements," PLOS Biology, Public Library of Science, vol. 5(12), pages 1-14, December.
    3. Rong J. B. Zhu & Xue-Xin Wei, 2023. "Unsupervised approach to decomposing neural tuning variability," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Jeroen Brus & Joseph A. Heng & Valeriia Beliaeva & Fabian Gonzalez Pinto & Antonino Mario Cassarà & Esra Neufeld & Marcus Grueschow & Lukas Imbach & Rafael Polanía, 2024. "Causal phase-dependent control of non-spatial attention in human prefrontal cortex," Nature Human Behaviour, Nature, vol. 8(4), pages 743-757, April.
    5. George Loewenstein & Zachary Wojtowicz, 2023. "The Economics of Attention," CESifo Working Paper Series 10712, CESifo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3000387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.