IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14180.html
   My bibliography  Save this article

Chirality detection of enantiomers using twisted optical metamaterials

Author

Listed:
  • Yang Zhao

    (The University of Texas at Austin, 1 University Station)

  • Amir N. Askarpour

    (The University of Texas at Austin, 1 University Station
    Amirkabir University of Technology)

  • Liuyang Sun

    (The University of Texas at Austin, 1 University Station)

  • Jinwei Shi

    (Beijing Normal University)

  • Xiaoqin Li

    (The University of Texas at Austin, 1 University Station)

  • Andrea Alù

    (The University of Texas at Austin, 1 University Station)

Abstract

Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies.

Suggested Citation

  • Yang Zhao & Amir N. Askarpour & Liuyang Sun & Jinwei Shi & Xiaoqin Li & Andrea Alù, 2017. "Chirality detection of enantiomers using twisted optical metamaterials," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14180
    DOI: 10.1038/ncomms14180
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14180
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Fang & Rui Chen & David Sharp & Enrico M. Renzi & Arnab Manna & Abhinav Kala & Sander A. Mann & Kan Yao & Christopher Munley & Hannah Rarick & Andrew Tang & Sinabu Pumulo & Yuebing Zheng & Vinod M, 2024. "Million-Q free space meta-optical resonator at near-visible wavelengths," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Sungwook Choi & Sang Won Im & Ji-Hyeok Huh & Sungwon Kim & Jaeseung Kim & Yae-Chan Lim & Ryeong Myeong Kim & Jeong Hyun Han & Hyeohn Kim & Michael Sprung & Su Yong Lee & Wonsuk Cha & Ross Harder & Seu, 2023. "Strain and crystallographic identification of the helically concaved gap surfaces of chiral nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Chi Zhang & Huatian Hu & Chunmiao Ma & Yawen Li & Xujie Wang & Dongyao Li & Artur Movsesyan & Zhiming Wang & Alexander Govorov & Quan Gan & Tao Ding, 2024. "Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Jason Soric & Younes Ra’di & Diego Farfan & Andrea Alù, 2022. "Radio-transparent dipole antenna based on a metasurface cloak," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Geon Yeong Kim & Shinho Kim & Ki Hyun Park & Hanhwi Jang & Moohyun Kim & Tae Won Nam & Kyeong Min Song & Hongjoo Shin & Yemin Park & Yeongin Cho & Jihyeon Yeom & Min-Jae Choi & Min Seok Jang & Yeon Si, 2024. "Chiral 3D structures through multi-dimensional transfer printing of multilayer quantum dot patterns," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Yijie Shen & Zhensong Wan & Xing Fu & Mali Gong & Xilin Yang & Ruoyang Qi & Mali Gong, 2018. "Recent Advances on Tunable Vortex Beam Devices for Biomedical Applications," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 9(3), pages 7134-7138, September.
    7. Guankui Long & Giorgio Adamo & Jingyi Tian & Maciej Klein & Harish N. S. Krishnamoorthy & Elena Feltri & Hebin Wang & Cesare Soci, 2022. "Perovskite metasurfaces with large superstructural chirality," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.