IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9144.html
   My bibliography  Save this article

Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials

Author

Listed:
  • Chenguang Fu

    (State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University)

  • Shengqiang Bai

    (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences)

  • Yintu Liu

    (State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University)

  • Yunshan Tang

    (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences)

  • Lidong Chen

    (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences)

  • Xinbing Zhao

    (State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University
    Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University)

  • Tiejun Zhu

    (State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University
    Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University)

Abstract

Solid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron–phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm−2 at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability.

Suggested Citation

  • Chenguang Fu & Shengqiang Bai & Yintu Liu & Yunshan Tang & Lidong Chen & Xinbing Zhao & Tiejun Zhu, 2015. "Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9144
    DOI: 10.1038/ncomms9144
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9144
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Z.H. & Ma, Y.J. & Tang, G.H. & Zhang, Hu & Ji, F. & Sheng, Q., 2023. "Integration of thermal insulation and thermoelectric conversion embedded with phase change materials," Energy, Elsevier, vol. 278(C).
    2. Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Zhang, Qiang & Cai, Jianfeng & Wu, Jiehua & Tan, Xiaojian & Liu, Guoqiang & Song, Kun & Jiang, Jun, 2023. "Optimizing GeTe-based thermoelectric generator for low-grade heat recovery," Applied Energy, Elsevier, vol. 349(C).
    3. Sharma, Vaishali & Kagdada, Hardik L. & Jha, Prafulla K. & Śpiewak, Piotr & Kurzydłowski, Krzysztof J., 2020. "Thermal transport properties of boron nitride based materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Kaja Bilińska & Dominika Goles & Maciej J. Winiarski, 2023. "A theoretical investigation of 18-electron half-Heusler tellurides in terms of potential thermoelectric value," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(10), pages 1-8, October.
    5. Yoo, Chung-Yul & Yeon, Changho & Jin, Younghwan & Kim, Yeongseon & Song, Jinseop & Yoon, Hana & Park, Sang Hyun & Beltrán-Pitarch, Braulio & García-Cañadas, Jorge & Min, Gao, 2019. "Determination of the thermoelectric properties of a skutterudite-based device at practical operating temperatures by impedance spectroscopy," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Sadeq Hooshmand Zaferani & Alireza Darebaghi & Soon-Jik Hong & Daryoosh Vashaee & Reza Ghomashchi, 2020. "Experimental Realization of Heavily p-doped Half-Heusler CoVSn Compound," Energies, MDPI, vol. 13(6), pages 1-11, March.
    7. Wu, Yongjia & Yang, Jihui & Chen, Shikui & Zuo, Lei, 2018. "Thermo-element geometry optimization for high thermoelectric efficiency," Energy, Elsevier, vol. 147(C), pages 672-680.
    8. Cheng, Fuqiang & Hong, Yanji & Li, Weiping & Guo, Xiaohong & Zhang, Hailong & Fu, Feng & Feng, Bingqing & Wang, Gang & Wang, Chao & Qin, Haibing, 2017. "A thermoelectric generator for scavenging gas-heat: From module optimization to prototype test," Energy, Elsevier, vol. 121(C), pages 545-560.
    9. Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2017. "Wearable thermoelectric generator for harvesting heat on the curved human wrist," Applied Energy, Elsevier, vol. 205(C), pages 710-719.
    10. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Mao, Zhengsong, 2023. "Performance analysis of diesel particulate filter thermoelectric conversion mobile energy storage system under engine conditions of low-speed and light-load," Energy, Elsevier, vol. 282(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.