IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v147y2018icp672-680.html
   My bibliography  Save this article

Thermo-element geometry optimization for high thermoelectric efficiency

Author

Listed:
  • Wu, Yongjia
  • Yang, Jihui
  • Chen, Shikui
  • Zuo, Lei

Abstract

The figure of merit of thermoelectric materials is temperature dependent, and thus the local compatibility factor changes significantly along the thermo-element length. A local optimization method to maximize the efficiency of a function graded thermoelectric generator was proposed and discussed in this paper. By adjusting the cross-sectional area and segment's thickness, the reduced current equaled the compatibility factor of the material at every local thermo-element layer. This method can use the full potential of existing materials by maximizing the efficiency at every local thermo-element segment. For such a TEG working in a temperature range of 300–1100 K, the efficiencies of P-type segmented Bi0.5Sb1.5Te3/BiSbTe/-PbTe/FeNbSb thermo-element and a N-type segmented Bi2Te2.79Se0.21/Bi2Te2.9Se1.1/SnSe/SiGe thermo-element were 25.70% and 21.73%, respectively, much higher than the conventional segmented thermo-elements. The overall efficiency of the device was more than 23.72%, making it a promising technology to harvest energy from medium and high-temperature industrial components. The optimized TEG can be fabricated by SLS/SLM technology.

Suggested Citation

  • Wu, Yongjia & Yang, Jihui & Chen, Shikui & Zuo, Lei, 2018. "Thermo-element geometry optimization for high thermoelectric efficiency," Energy, Elsevier, vol. 147(C), pages 672-680.
  • Handle: RePEc:eee:energy:v:147:y:2018:i:c:p:672-680
    DOI: 10.1016/j.energy.2018.01.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218301221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chenguang Fu & Shengqiang Bai & Yintu Liu & Yunshan Tang & Lidong Chen & Xinbing Zhao & Tiejun Zhu, 2015. "Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    2. Jang, Jiin-Yuh & Tsai, Ying-Chi & Wu, Chan-Wei, 2013. "A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink," Energy, Elsevier, vol. 53(C), pages 270-281.
    3. Kanishka Biswas & Jiaqing He & Ivan D. Blum & Chun-I Wu & Timothy P. Hogan & David N. Seidman & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2012. "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, Nature, vol. 489(7416), pages 414-418, September.
    4. Wu, Yongjia & Zuo, Lei & Chen, Jie & Klein, Jackson A., 2016. "A model to analyze the device level performance of thermoelectric generator," Energy, Elsevier, vol. 115(P1), pages 591-603.
    5. Li-Dong Zhao & Shih-Han Lo & Yongsheng Zhang & Hui Sun & Gangjian Tan & Ctirad Uher & C. Wolverton & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2014. "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals," Nature, Nature, vol. 508(7496), pages 373-377, April.
    6. Ming, T. & Wu, Y. & Peng, C. & Tao, Y., 2015. "Thermal analysis on a segmented thermoelectric generator," Energy, Elsevier, vol. 80(C), pages 388-399.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maduabuchi, Chika, 2022. "Thermo-mechanical optimization of thermoelectric generators using deep learning artificial intelligence algorithms fed with verified finite element simulation data," Applied Energy, Elsevier, vol. 315(C).
    2. Wang, Xi & Henshaw, Paul & Ting, David S.-K., 2021. "Exergoeconomic analysis for a thermoelectric generator using mutation particle swarm optimization (M-PSO)," Applied Energy, Elsevier, vol. 294(C).
    3. Kong, Li & Yu, Jia & Zhu, Hongji & Zhu, Qingshan & Yan, Qing, 2022. "Effect of three parameters of the periodic rectangular pulsed heat flux on the electrical performance improvement to a thermoelectric generator," Energy, Elsevier, vol. 261(PA).
    4. Yin, Tao & Li, Zhen-Ming & Peng, Peng & Liu, Wei & Shao, Yu-Ying & He, Zhi-Zhu, 2021. "Performance analysis and design optimization of a compact thermoelectric generator with T-Shaped configuration," Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Lei & Li, Huaqi & Chen, Sen & Tian, Xiaoyan & Kang, Xiaoya & Jiang, Xinbiao & Qiu, Suizheng, 2020. "Optimization analysis of a segmented thermoelectric generator based on genetic algorithm," Renewable Energy, Elsevier, vol. 156(C), pages 710-718.
    2. Eom, Yoomin & Wijethunge, Dimuthu & Park, Hwanjoo & Park, Sang Hyun & Kim, Woochul, 2017. "Flexible thermoelectric power generation system based on rigid inorganic bulk materials," Applied Energy, Elsevier, vol. 206(C), pages 649-656.
    3. Shen, Zu-Guo & Liu, Xun & Chen, Shuai & Wu, Shuang-Ying & Xiao, Lan & Chen, Zu-Xiang, 2018. "Theoretical analysis on a segmented annular thermoelectric generator," Energy, Elsevier, vol. 157(C), pages 297-313.
    4. Kevin Bethke & Virgil Andrei & Klaus Rademann, 2016. "Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-19, March.
    5. Zhi Li & Wenhao Li & Zhen Chen, 2017. "Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant," Energies, MDPI, vol. 10(10), pages 1-15, September.
    6. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Yulong Li & Xun Shi & Dudi Ren & Jikun Chen & Lidong Chen, 2015. "Investigation of the Anisotropic Thermoelectric Properties of Oriented Polycrystalline SnSe," Energies, MDPI, vol. 8(7), pages 1-11, June.
    8. Paribesh Acharyya & Tanmoy Ghosh & Koushik Pal & Kewal Singh Rana & Moinak Dutta & Diptikanta Swain & Martin Etter & Ajay Soni & Umesh V. Waghmare & Kanishka Biswas, 2022. "Glassy thermal conductivity in Cs3Bi2I6Cl3 single crystal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Yong Yu & Xiao Xu & Yan Wang & Baohai Jia & Shan Huang & Xiaobin Qiang & Bin Zhu & Peijian Lin & Binbin Jiang & Shixuan Liu & Xia Qi & Kefan Pan & Di Wu & Haizhou Lu & Michel Bosman & Stephen J. Penny, 2022. "Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Cheng, Fuqiang & Hong, Yanji & Li, Weiping & Guo, Xiaohong & Zhang, Hailong & Fu, Feng & Feng, Bingqing & Wang, Gang & Wang, Chao & Qin, Haibing, 2017. "A thermoelectric generator for scavenging gas-heat: From module optimization to prototype test," Energy, Elsevier, vol. 121(C), pages 545-560.
    11. Sajid, Muhammad & Hassan, Ibrahim & Rahman, Aziz, 2017. "An overview of cooling of thermoelectric devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 15-22.
    12. Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Zhang, Qiang & Cai, Jianfeng & Wu, Jiehua & Tan, Xiaojian & Liu, Guoqiang & Song, Kun & Jiang, Jun, 2023. "Optimizing GeTe-based thermoelectric generator for low-grade heat recovery," Applied Energy, Elsevier, vol. 349(C).
    13. Fabian Garmroudi & Michael Parzer & Alexander Riss & Andrei V. Ruban & Sergii Khmelevskyi & Michele Reticcioli & Matthias Knopf & Herwig Michor & Andrej Pustogow & Takao Mori & Ernst Bauer, 2022. "Anderson transition in stoichiometric Fe2VAl: high thermoelectric performance from impurity bands," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Sharma, Vaishali & Kagdada, Hardik L. & Jha, Prafulla K. & Śpiewak, Piotr & Kurzydłowski, Krzysztof J., 2020. "Thermal transport properties of boron nitride based materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Shaoping Zhan & Tao Hong & Bingchao Qin & Yingcai Zhu & Xiang Feng & Lizhong Su & Haonan Shi & Hao Liang & Qianfan Zhang & Xiang Gao & Zhen-Hua Ge & Lei Zheng & Dongyang Wang & Li-Dong Zhao, 2022. "Realizing high-ranged thermoelectric performance in PbSnS2 crystals," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    17. Rui Liu & Guangkun Ren & Xing Tan & Yuanhua Lin & Cewen Nan, 2016. "Enhanced Thermoelectric Properties of Cu 3 SbSe 3 -Based Composites with Inclusion Phases," Energies, MDPI, vol. 9(10), pages 1-7, October.
    18. Chen, Min & Gao, Xin, 2014. "Theoretical, experimental and numerical diagnose of critical power point of thermoelectric generators," Energy, Elsevier, vol. 78(C), pages 364-372.
    19. Bushra Jabar & Fu Li & Zhuanghao Zheng & Adil Mansoor & Yongbin Zhu & Chongbin Liang & Dongwei Ao & Yuexing Chen & Guangxing Liang & Ping Fan & Weishu Liu, 2021. "Homo-composition and hetero-structure nanocomposite Pnma Bi2SeS2 - Pnnm Bi2SeS2 with high thermoelectric performance," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    20. Zihang Liu & Weihong Gao & Hironori Oshima & Kazuo Nagase & Chul-Ho Lee & Takao Mori, 2022. "Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:147:y:2018:i:c:p:672-680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.