IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57106-z.html
   My bibliography  Save this article

Achieving burst Li+ channels via quasi-two-dimensional fluorinated metal-organic framework modulating functionalized interface

Author

Listed:
  • Lingchen Kong

    (Tianjin University)

  • Yu Li

    (Beijing University of Chemical Technology)

  • Cong Peng

    (Beijing University of Chemical Technology)

  • Ziyue Zhao

    (Tianjin University)

  • Junwei Xiao

    (Tianjin University)

  • Yimin Zhao

    (Tianjin University)

  • Wei Feng

    (Tianjin University
    Beijing University of Chemical Technology
    Tianjin Key Laboratory of Composite and Functional Materials
    Ministry of Education)

Abstract

The development of disordered Li dendrite and the adverse reaction between Li and electrolyte impede practical use of Li metal batteries (LMB). Herein, we propose quasi-two-dimensional fluorinated metal-organic framework carbon (q2D-FcMOF) that is utilized to construct artificial solid electrolyte interface (ASEI) to achieve robust interfacial protective double-layer. The outer organic layer provides ample space for Li deposition, while the inner inorganic LiF layer promotes conduction of Li+ and blocks electron transport. Metal clusters within the hybrid layer are uniformly dispersed, encouraging Li+ to cluster around metal active sites that are thermodynamically compatible with Li. Consequently, q2D-FcZ8@Li symmetrical batteries demonstrate an ultralong cycle life over 3600 h. When paried with commercial cathodes, the cells exhibite cyclability under conditions of high-loading, lean-electrolyte, even exposure to air for some time. This research suggests an effective method for fabricating ASEI using 2D quasi-ordered superstructure MOF NPs, which is expected to the development of LMB.

Suggested Citation

  • Lingchen Kong & Yu Li & Cong Peng & Ziyue Zhao & Junwei Xiao & Yimin Zhao & Wei Feng, 2025. "Achieving burst Li+ channels via quasi-two-dimensional fluorinated metal-organic framework modulating functionalized interface," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57106-z
    DOI: 10.1038/s41467-025-57106-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57106-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57106-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongli Wan & Zeyi Wang & Sufu Liu & Bao Zhang & Xinzi He & Weiran Zhang & Chunsheng Wang, 2023. "Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design," Nature Energy, Nature, vol. 8(5), pages 473-481, May.
    2. Yue Gao & Tomas Rojas & Ke Wang & Shuai Liu & Daiwei Wang & Tianhang Chen & Haiying Wang & Anh T. Ngo & Donghai Wang, 2020. "Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface," Nature Energy, Nature, vol. 5(7), pages 534-542, July.
    3. Xintong Yuan & Bo Liu & Matthew Mecklenburg & Yuzhang Li, 2023. "Ultrafast deposition of faceted lithium polyhedra by outpacing SEI formation," Nature, Nature, vol. 620(7972), pages 86-91, August.
    4. Mintao Wan & Sujin Kang & Li Wang & Hyun-Wook Lee & Guangyuan Wesley Zheng & Yi Cui & Yongming Sun, 2020. "Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    5. Zhijin Ju & Jianwei Nai & Yao Wang & Tiefeng Liu & Jianhui Zheng & Huadong Yuan & Ouwei Sheng & Chengbin Jin & Wenkui Zhang & Zhong Jin & He Tian & Yujing Liu & Xinyong Tao, 2020. "Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangyang Feng & Yong Li & Jing Lin & Huyue Wu & Lei Zhu & Xiang Zhang & Linlin Zhang & Chuan-Fu Sun & Maoxiang Wu & Yaobing Wang, 2023. "Production of high-energy 6-Ah-level Li | |LiNi0.83Co0.11Mn0.06O2 multi-layer pouch cells via negative electrode protective layer coating strategy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Chanho Kim & Gyutae Nam & Yoojin Ahn & Xueyu Hu & Meilin Liu, 2024. "Nb1.60Ti0.32W0.08O5−δ as negative electrode active material for durable and fast-charging all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yuzhao Liu & Xiangyu Meng & Zhiyu Wang & Jieshan Qiu, 2022. "Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Yahan Meng & Mingming Wang & Jiazhi Wang & Xuehai Huang & Xiang Zhou & Muhammad Sajid & Zehui Xie & Ruihao Luo & Zhengxin Zhu & Zuodong Zhang & Nawab Ali Khan & Yu Wang & Zhenyu Li & Wei Chen, 2024. "Robust bilayer solid electrolyte interphase for Zn electrode with high utilization and efficiency," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Zhuo Li & Rui Yu & Suting Weng & Qinghua Zhang & Xuefeng Wang & Xin Guo, 2023. "Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Guodong Zou & Jinming Wang & Yong Sun & Weihao Yang & Tingting Niu & Jinyu Li & Liqun Ren & Zhi Wei Seh & Qiuming Peng, 2025. "A nanotwinned-alloy strategy enables fast sodium deposition dynamics," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    7. Kai Yang & Hongchang Cai & Suran Li & Yu Wang & Xue Zhang & Zhenxuan Wu & Yilin Lai & Minella Bezha & Klara Bezha & Naoto Nagaoka & Yuejiu Zheng & Xuning Feng, 2024. "Research on Quantitative Diagnosis of Dendrites Based on Titration Gas Chromatography Technology," Energies, MDPI, vol. 17(10), pages 1-19, May.
    8. Mengyao Tang & Shuai Dong & Jiawei Wang & Liwei Cheng & Qiaonan Zhu & Yanmei Li & Xiuyi Yang & Lin Guo & Hua Wang, 2023. "Low-temperature anode-free potassium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Guangzhao Zhang & Jian Chang & Liguang Wang & Jiawei Li & Chaoyang Wang & Ruo Wang & Guoli Shi & Kai Yu & Wei Huang & Honghe Zheng & Tianpin Wu & Yonghong Deng & Jun Lu, 2023. "A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Mengchen Liu & Jessica J. Hong & Elias Sebti & Ke Zhou & Shen Wang & Shijie Feng & Tyler Pennebaker & Zeyu Hui & Qiushi Miao & Ershuang Lu & Nimrod Harpak & Sicen Yu & Jianbin Zhou & Jeong Woo Oh & Mi, 2025. "Surface molecular engineering to enable processing of sulfide solid electrolytes in humid ambient air," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    11. Chuanlong Wang & Akila C. Thenuwara & Jianmin Luo & Pralav P. Shetty & Matthew T. McDowell & Haoyu Zhu & Sergio Posada-Pérez & Hui Xiong & Geoffroy Hautier & Weiyang Li, 2022. "Extending the low-temperature operation of sodium metal batteries combining linear and cyclic ether-based electrolyte solutions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Ghulam E Mustafa Abro & Saiful Azrin B. M. Zulkifli & Kundan Kumar & Najib El Ouanjli & Vijanth Sagayan Asirvadam & Mahmoud A. Mossa, 2023. "Comprehensive Review of Recent Advancements in Battery Technology, Propulsion, Power Interfaces, and Vehicle Network Systems for Intelligent Autonomous and Connected Electric Vehicles," Energies, MDPI, vol. 16(6), pages 1-31, March.
    13. Yanhua Zhang & Rui Qiao & Qiaona Nie & Peiyu Zhao & Yong Li & Yunfei Hong & Shengjie Chen & Chao Li & Baoyu Sun & Hao Fan & Junkai Deng & Jingying Xie & Feng Liu & Jiangxuan Song, 2024. "Synergetic regulation of SEI mechanics and crystallographic orientation for stable lithium metal pouch cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Han Su & Jingru Li & Yu Zhong & Yu Liu & Xuhong Gao & Juner Kuang & Minkang Wang & Chunxi Lin & Xiuli Wang & Jiangping Tu, 2024. "A scalable Li-Al-Cl stratified structure for stable all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57106-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.