IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39391-8.html
   My bibliography  Save this article

Production of high-energy 6-Ah-level Li | |LiNi0.83Co0.11Mn0.06O2 multi-layer pouch cells via negative electrode protective layer coating strategy

Author

Listed:
  • Yangyang Feng

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yong Li

    (Shanghai Institute of Space Power-Sources)

  • Jing Lin

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Huyue Wu

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Fujian Normal University)

  • Lei Zhu

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Xiang Zhang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Linlin Zhang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Chuan-Fu Sun

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Maoxiang Wu

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yaobing Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China
    University of Chinese Academy of Sciences)

Abstract

Stable lithium metal negative electrodes are desirable to produce high-energy batteries. However, when practical testing conditions are applied, lithium metal is unstable during battery cycling. Here, we propose poly(2-hydroxyethyl acrylate-co-sodium benzenesulfonate) (PHS) as negative electrode protective layer. The PHS contains soft poly (2-hydroxyethyl acrylate) and poly(sodium p-styrene sulfonate), which improve electrode flexibility, connection with the Cu current collector and transport of Li ions. Transmission electron cryomicroscopy measurements reveal that PHS induces the formation of a solid electrolyte interphase with a fluorinated rigid and crystalline internal structure. Furthermore, theoretical calculations suggest that the -SO3- group of poly(sodium p-styrene sulfonate) promotes Li-ion motion towards interchain migration through cation-dipole interaction, thus, enabling uniform Li-ion diffusion. Electrochemical measurements of Li | |PHS-coated-Cu coin cells demonstrate an average Coulombic efficiency of 99.46% at 1 mA/cm2, 6 mAh/cm2 and 25 °C. Moreover, when the PHS-coated Li metal negative electrode is paired with a high-areal-capacity LiNi0.83Co0.11Mn0.06O2-based positive electrode in multi-layer pouch cell configuration, the battery delivers an initial capacity of 6.86 Ah (corresponding to a specific energy of 489.7 Wh/kg) and, a 91.1% discharge capacity retention after 150 cycles at 2.5 mA/cm2, 25 °C and 172 kPa.

Suggested Citation

  • Yangyang Feng & Yong Li & Jing Lin & Huyue Wu & Lei Zhu & Xiang Zhang & Linlin Zhang & Chuan-Fu Sun & Maoxiang Wu & Yaobing Wang, 2023. "Production of high-energy 6-Ah-level Li | |LiNi0.83Co0.11Mn0.06O2 multi-layer pouch cells via negative electrode protective layer coating strategy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39391-8
    DOI: 10.1038/s41467-023-39391-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39391-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39391-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhiao Yu & Paul E. Rudnicki & Zewen Zhang & Zhuojun Huang & Hasan Celik & Solomon T. Oyakhire & Yuelang Chen & Xian Kong & Sang Cheol Kim & Xin Xiao & Hansen Wang & Yu Zheng & Gaurav A. Kamat & Mun Se, 2022. "Rational solvent molecule tuning for high-performance lithium metal battery electrolytes," Nature Energy, Nature, vol. 7(1), pages 94-106, January.
    2. Chaojiang Niu & Dianying Liu & Joshua A. Lochala & Cassidy S. Anderson & Xia Cao & Mark E. Gross & Wu Xu & Ji-Guang Zhang & M. Stanley Whittingham & Jie Xiao & Jun Liu, 2021. "Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries," Nature Energy, Nature, vol. 6(7), pages 723-732, July.
    3. Zhijin Ju & Jianwei Nai & Yao Wang & Tiefeng Liu & Jianhui Zheng & Huadong Yuan & Ouwei Sheng & Chengbin Jin & Wenkui Zhang & Zhong Jin & He Tian & Yujing Liu & Xinyong Tao, 2020. "Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Yue Gao & Tomas Rojas & Ke Wang & Shuai Liu & Daiwei Wang & Tianhang Chen & Haiying Wang & Anh T. Ngo & Donghai Wang, 2020. "Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface," Nature Energy, Nature, vol. 5(7), pages 534-542, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangzhao Zhang & Jian Chang & Liguang Wang & Jiawei Li & Chaoyang Wang & Ruo Wang & Guoli Shi & Kai Yu & Wei Huang & Honghe Zheng & Tianpin Wu & Yonghong Deng & Jun Lu, 2023. "A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Hyeokjin Kwon & Hongsin Kim & Jaemin Hwang & Wonsik Oh & Youngil Roh & Dongseok Shin & Hee-Tak Kim, 2024. "Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion," Nature Energy, Nature, vol. 9(1), pages 57-69, January.
    3. Yanhua Zhang & Rui Qiao & Qiaona Nie & Peiyu Zhao & Yong Li & Yunfei Hong & Shengjie Chen & Chao Li & Baoyu Sun & Hao Fan & Junkai Deng & Jingying Xie & Feng Liu & Jiangxuan Song, 2024. "Synergetic regulation of SEI mechanics and crystallographic orientation for stable lithium metal pouch cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Zhuangzhuang Cui & Zhuangzhuang Jia & Digen Ruan & Qingshun Nian & Jiajia Fan & Shunqiang Chen & Zixu He & Dazhuang Wang & Jinyu Jiang & Jun Ma & Xing Ou & Shuhong Jiao & Qingsong Wang & Xiaodi Ren, 2024. "Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Jiawei Chen & Daoming Zhang & Lei Zhu & Mingzhu Liu & Tianle Zheng & Jie Xu & Jun Li & Fei Wang & Yonggang Wang & Xiaoli Dong & Yongyao Xia, 2024. "Hybridizing carbonate and ether at molecular scales for high-energy and high-safety lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Mengyao Tang & Shuai Dong & Jiawei Wang & Liwei Cheng & Qiaonan Zhu & Yanmei Li & Xiuyi Yang & Lin Guo & Hua Wang, 2023. "Low-temperature anode-free potassium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Fangli Zhang & Wenchao Zhang & Jodie A. Yuwono & David Wexler & Yameng Fan & Jinshuo Zou & Gemeng Liang & Liang Sun & Zaiping Guo, 2024. "Catalytic role of in-situ formed C-N species for enhanced Li2CO3 decomposition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Jiaqi Cao & Yuansheng Shi & Aosong Gao & Guangyuan Du & Muhtar Dilxat & Yongfei Zhang & Mohang Cai & Guoyu Qian & Xueyi Lu & Fangyan Xie & Yang Sun & Xia Lu, 2024. "Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Zhixin Xu & Xiyue Zhang & Jun Yang & Xuzixu Cui & Yanna Nuli & Jiulin Wang, 2024. "High-voltage and intrinsically safe electrolytes for Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Yanfei Zhu & Zhoujie Lao & Mengtian Zhang & Tingzheng Hou & Xiao Xiao & Zhihong Piao & Gongxun Lu & Zhiyuan Han & Runhua Gao & Lu Nie & Xinru Wu & Yanze Song & Chaoyuan Ji & Jian Wang & Guangmin Zhou, 2024. "A locally solvent-tethered polymer electrolyte for long-life lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Yuzhao Liu & Xiangyu Meng & Zhiyu Wang & Jieshan Qiu, 2022. "Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Shuo Sun & Zhen Han & Wei Liu & Qiuying Xia & Liang Xue & Xincheng Lei & Teng Zhai & Dong Su & Hui Xia, 2023. "Lattice pinning in MoO3 via coherent interface with stabilized Li+ intercalation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Junyeob Moon & Dong Ok Kim & Lieven Bekaert & Munsoo Song & Jinkyu Chung & Danwon Lee & Annick Hubin & Jongwoo Lim, 2022. "Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Yao Wang & Shuyu Dong & Yifu Gao & Pui-Kit Lee & Yao Tian & Yuefeng Meng & Xia Hu & Xin Zhao & Baohua Li & Dong Zhou & Feiyu Kang, 2024. "Difluoroester solvent toward fast-rate anion-intercalation lithium metal batteries under extreme conditions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Yahan Meng & Mingming Wang & Jiazhi Wang & Xuehai Huang & Xiang Zhou & Muhammad Sajid & Zehui Xie & Ruihao Luo & Zhengxin Zhu & Zuodong Zhang & Nawab Ali Khan & Yu Wang & Zhenyu Li & Wei Chen, 2024. "Robust bilayer solid electrolyte interphase for Zn electrode with high utilization and efficiency," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Junbo Zhang & Haikuo Zhang & Suting Weng & Ruhong Li & Di Lu & Tao Deng & Shuoqing Zhang & Ling Lv & Jiacheng Qi & Xuezhang Xiao & Liwu Fan & Shujiang Geng & Fuhui Wang & Lixin Chen & Malachi Noked & , 2023. "Multifunctional solvent molecule design enables high-voltage Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Muhammad Mominur Rahman & Sha Tan & Yang Yang & Hui Zhong & Sanjit Ghose & Iradwikanari Waluyo & Adrian Hunt & Lu Ma & Xiao-Qing Yang & Enyuan Hu, 2023. "An inorganic-rich but LiF-free interphase for fast charging and long cycle life lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Jijiang Liu & Wei Hao & Mingming Fang & Xin Chen & Yongteng Dong & Yuanmao Chen & Zhiyong Wang & Xinyang Yue & Zheng Liang, 2024. "Screening of F-containing electrolyte additives and clarifying their decomposition routes for stable Li metal anodes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39391-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.