IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57054-8.html
   My bibliography  Save this article

Anthropogenic nutrient inputs cause excessive algal growth for nearly half the world’s population

Author

Listed:
  • Richard W. McDowell

    (Lincoln Science Centre
    Lincoln University)

  • Dongwen Luo

    (Ruakura Research Centre)

  • Peter Pletnyakov

    (Lincoln Science Centre)

  • Martin Upsdell

    (Ruakura Research Centre)

  • Walter K. Dodds

    (Kansas State University)

Abstract

Reference conditions pertain to conditions without anthropogenic influence and serve to gauge the degree of river pollution and identify the best attainable water quality. Here we show estimates of the global human footprint of nitrogen and phosphorus concentrations and potential for related nuisance or harmful algal growth in rivers. We use statistical models based on 1.2 million stream nutrient measurements (from 2005 to 2013) and find global human enrichment of river total nitrogen and total phosphorus is 35% and 14% respectively. The greatest enrichment is in Europe (86 and 30% respectively) and the least in Oceania (9 and 2% respectively). The levels of enrichment translated into an almost doubling of the catchment areas with rivers predicted to have anthropogenically elevated levels of potentially harmful or nuisance algae, affecting ~40% of the world’s population. Focusing management on the difference between current and reference conditions can help protect good water quality while avoiding unrealistic goals where nitrogen and phosphorus are naturally high.

Suggested Citation

  • Richard W. McDowell & Dongwen Luo & Peter Pletnyakov & Martin Upsdell & Walter K. Dodds, 2025. "Anthropogenic nutrient inputs cause excessive algal growth for nearly half the world’s population," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57054-8
    DOI: 10.1038/s41467-025-57054-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57054-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57054-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. ChaoQing Yu & Xiao Huang & Han Chen & H. Charles J. Godfray & Jonathon S. Wright & Jim W. Hall & Peng Gong & ShaoQiang Ni & ShengChao Qiao & GuoRui Huang & YuChen Xiao & Jie Zhang & Zhao Feng & XiaoTa, 2019. "Managing nitrogen to restore water quality in China," Nature, Nature, vol. 567(7749), pages 516-520, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heng Liu & Caizhu Huang & Heng Lian & Xia Cui, 2023. "Hierarchical Spatially Varying Coefficient Process Regression for Modeling Net Anthropogenic Nitrogen Inputs (NANI) from the Watershed of the Yangtze River, China," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    2. Jianqin Ma & Yongqing Wang & Lei Liu & Bifeng Cui & Yu Ding & Lansong Liu, 2025. "Research on Summer Maize Irrigation and Fertilization Strategy in Henan Province Based on Multi-Objective Optimization Model," Sustainability, MDPI, vol. 17(5), pages 1-13, February.
    3. Li Wang & Siyuan Liu & Wendi Xuan & Shaopeng Li & Anlei Wei, 2022. "Efficient Nitrate Adsorption from Groundwater by Biochar-Supported Al-Substituted Goethite," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    4. Mingqing Liu & Yuncheng Wu & Sijie Huang & Yuwen Yang & Yan Li & Lei Wang & Yunguan Xi & Jibing Zhang & Qiuhui Chen, 2022. "Effects of Organic Fertilization Rates on Surface Water Nitrogen and Phosphorus Concentrations in Paddy Fields," Agriculture, MDPI, vol. 12(9), pages 1-12, September.
    5. Mengru Wang & Benjamin Leon Bodirsky & Rhodé Rijneveld & Felicitas Beier & Mirjam P. Bak & Masooma Batool & Bram Droppers & Alexander Popp & Michelle T. H. Vliet & Maryna Strokal, 2024. "A triple increase in global river basins with water scarcity due to future pollution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Wang, Zhong-Jun & Yue, Fu-Jun & Wang, Yu-Chun & Qin, Cai-Qing & Ding, Hu & Xue, Li-Li & Li, Si-Liang, 2022. "The effect of heavy rainfall events on nitrogen patterns in agricultural surface and underground streams and the implications for karst water quality protection," Agricultural Water Management, Elsevier, vol. 266(C).
    7. Duan, Chenxiao & Li, Jiabei & Zhang, Binbin & Wu, Shufang & Fan, Junliang & Feng, Hao & He, Jianqiang & Siddique, Kadambot H.M., 2023. "Effect of bio-organic fertilizer derived from agricultural waste resources on soil properties and winter wheat (Triticum aestivum L.) yield in semi-humid drought-prone regions," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Kiyotaka Tsunemi & Tohru Kawamoto & Hideyuki Matsumoto, 2023. "Estimation of the Potential Global Nitrogen Flow in a Nitrogen Recycling System with Industrial Countermeasures," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    9. Panpan Ji & Jianhui Chen & Ruijin Chen & Jianbao Liu & Chaoqing Yu & Fahu Chen, 2024. "Nitrogen and phosphorus trends in lake sediments of China may diverge," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Qinyi Huang & Yu Zhang, 2021. "Decoupling and Decomposition Analysis of Agricultural Carbon Emissions: Evidence from Heilongjiang Province, China," IJERPH, MDPI, vol. 19(1), pages 1-16, December.
    11. Taotao Chen & Erping Cui & Yanbo Zhang & Ge Gao & Hao You & Yurun Tian & Chao Hu & Yuan Liu & Tao Fan & Xiangyang Fan, 2024. "Microbial Network Complexity Helps to Reduce the Deep Migration of Chemical Fertilizer Nitrogen Under the Combined Application of Varying Irrigation Amounts and Multiple Nitrogen Sources," Agriculture, MDPI, vol. 14(12), pages 1-18, December.
    12. Ouping Deng & Sitong Wang & Jiangyou Ran & Shuai Huang & Xiuming Zhang & Jiakun Duan & Lin Zhang & Yongqiu Xia & Stefan Reis & Jiayu Xu & Jianming Xu & Wim Vries & Mark A. Sutton & Baojing Gu, 2024. "Managing urban development could halve nitrogen pollution in China," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Mehridokht Mortazavi & Mohammad Bagher Zandi & Rostam Pahlavan & Moradpasha Eskandari Nasab & Hinayah Rojas de Oliveira, 2025. "Estimation of Genetic Parameters for Milk Urea Nitrogen in Iranian Holstein Cattle Using Random Regression Models," Agriculture, MDPI, vol. 15(4), pages 1-16, February.
    14. Wang, Tian & Xiao, Wenfa & Huang, Zhilin & Zeng, Lixiong, 2022. "Interflow pattern govern nitrogen loss from tea orchard slopes in response to rainfall pattern in Three Gorges Reservoir Area," Agricultural Water Management, Elsevier, vol. 269(C).
    15. Kolluru, Venkatesh & John, Ranjeet & Saraf, Sakshi & Chen, Jiquan & Hankerson, Brett & Robinson, Sarah & Kussainova, Maira & Jain, Khushboo, 2023. "Gridded livestock density database and spatial trends for Kazakhstan," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10, pages 1-15.
    16. Yixuan Yang & Tongqian Zhao & Huazhe Jiao & Li Wu & Chunyan Xiao & Xiaoming Guo, 2022. "Types and Distribution of Organic Amines in Organic Nitrogen Deposition in Strategic Water Sources," IJERPH, MDPI, vol. 19(7), pages 1-17, March.
    17. Wang, Hongzhang & Ren, Hao & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Li, Geng & Han, Kun & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain," Agricultural Systems, Elsevier, vol. 204(C).
    18. Hou, Peng & Liu, Lu & Tahir, Muhammad & Li, Yan & Wang, Xuejun & Shi, Ning & Xiao, Yang & Ma, Changjian & Li, Yunkai, 2024. "Effect of fertilization on emitter clogging in drip irrigation using high sediment water: Perspective of sediment discharge capacity," Agricultural Water Management, Elsevier, vol. 294(C).
    19. Zhou, Liang & Chen, Wei & Xu, Shang, 2022. "Do rural residents care about domestic waste management? A hedonic analysis of housing prices in rural China," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322212, Agricultural and Applied Economics Association.
    20. Sha Feng & Dandan Fu & Xinru Han & Xiudong Wang, 2022. "Impacts of the Extension of Cassava Soil Conservation and Efficient Technology on the Reduction of Chemical Fertilizer Input in China," Sustainability, MDPI, vol. 14(22), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57054-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.