IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i7p4151-d784186.html
   My bibliography  Save this article

Types and Distribution of Organic Amines in Organic Nitrogen Deposition in Strategic Water Sources

Author

Listed:
  • Yixuan Yang

    (Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China)

  • Tongqian Zhao

    (Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China)

  • Huazhe Jiao

    (School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Li Wu

    (Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China)

  • Chunyan Xiao

    (Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China)

  • Xiaoming Guo

    (Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China)

Abstract

Organic nitrogen (ON) is an important part of atmospheric nitrogen deposition, but the content and distribution of components other than urea and amino acids are the blind area of current research. The deposition of organic amines (OA) in strategic water sources poses a great public health risk to unspecified populations. In order to further reveal the composition of about 50% soluble organic nitrogen, besides urea and amino acids, five functional sampling points (such as industrial area, agricultural area, urban area, tourism area and forest area) were set in the reservoir area to detect dissolved total nitrogen (DTN), dissolved organic nitrogen (DON) and OA components. The results show that the total nitrogen concentration was 6.42–10.82 mg/m 3 and the DON concentration was 2.77–4.99 mg/m 3 . Ten kinds of OA were detected: dimethylamine (DMA), diethylamine (DEA), propylamine (PA), butylamine (BA), pyrrolidine (PYR), dibutylamine (DBA), N-methylaniline (NMA), 2-ethylaniline (2-ELA), benzylamine (BMA), and 4-ethylaniline (4-ELA). The average concentrations were 7.64, 26.35, 14.51, 14.10, 18.55, 7.92, 10.56, 12.84, 13.46 and 21.00 ng/m 3 , respectively. The total concentration of ten OA accounted for 2.28–9.81% of DON in the current month, of which the content of DEA was the highest, reaching 0.71%, the content of 4-ELA, PYR, PA and BA was 0.4–0.56%, and the content of DMA, DBA and NMA was 0.2–0.36%. The sources of OA in the reservoir area have significant seasonal differences. The content is the highest in spring, followed by autumn, and lower in summer and winter. The rainfall in spring and autumn is small, the source of road dust is relatively high, and the rainfall in summer is large. After the particles in the air are washed by rain, the concentration of OA in the sample is the lowest. On account of spring and autumn being the time of frequent agricultural activities, the concentration of OA is significantly higher than that in winter and summer.

Suggested Citation

  • Yixuan Yang & Tongqian Zhao & Huazhe Jiao & Li Wu & Chunyan Xiao & Xiaoming Guo, 2022. "Types and Distribution of Organic Amines in Organic Nitrogen Deposition in Strategic Water Sources," IJERPH, MDPI, vol. 19(7), pages 1-17, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:4151-:d:784186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/7/4151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/7/4151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yixuan Yang & Tongqian Zhao & Huazhe Jiao & Yunfei Wang & Haiyan Li, 2020. "Potential Effect of Porosity Evolution of Cemented Paste Backfill on Selective Solidification of Heavy Metal Ions," IJERPH, MDPI, vol. 17(3), pages 1-12, January.
    2. ChaoQing Yu & Xiao Huang & Han Chen & H. Charles J. Godfray & Jonathon S. Wright & Jim W. Hall & Peng Gong & ShaoQiang Ni & ShengChao Qiao & GuoRui Huang & YuChen Xiao & Jie Zhang & Zhao Feng & XiaoTa, 2019. "Managing nitrogen to restore water quality in China," Nature, Nature, vol. 567(7749), pages 516-520, March.
    3. Yixuan Yang & Tongqian Zhao & Huazhe Jiao & Li Wu & Chunyan Xiao & Xiaoming Guo & Chao Jin, 2022. "Atmospheric Organic Nitrogen Deposition in Strategic Water Sources of China after COVID-19 Lockdown," IJERPH, MDPI, vol. 19(5), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heng Liu & Caizhu Huang & Heng Lian & Xia Cui, 2023. "Hierarchical Spatially Varying Coefficient Process Regression for Modeling Net Anthropogenic Nitrogen Inputs (NANI) from the Watershed of the Yangtze River, China," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    2. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    3. Shi, Xinrui & Batchelor, William D. & Liang, Hao & Li, Sien & Li, Baoguo & Hu, Kelin, 2020. "Determining optimal water and nitrogen management under different initial soil mineral nitrogen levels in northwest China based on a model approach," Agricultural Water Management, Elsevier, vol. 234(C).
    4. Xiang Luo & Yungui Li & Qingsong Wu & Zifei Wei & Qingqing Li & Liang Wei & Yi Shen & Rong Wang, 2019. "Characteristics of Internal Ammonium Loading from Long-Term Polluted Sediments by Rural Domestic Wastewater," IJERPH, MDPI, vol. 16(23), pages 1-15, November.
    5. Li Wang & Siyuan Liu & Wendi Xuan & Shaopeng Li & Anlei Wei, 2022. "Efficient Nitrate Adsorption from Groundwater by Biochar-Supported Al-Substituted Goethite," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    6. Yixuan Yang & Tongqian Zhao & Huazhe Jiao & Li Wu & Chunyan Xiao & Xiaoming Guo & Chao Jin, 2022. "Atmospheric Organic Nitrogen Deposition in Strategic Water Sources of China after COVID-19 Lockdown," IJERPH, MDPI, vol. 19(5), pages 1-14, February.
    7. Qiong Zhou & Qian Tan & Huixiang Zeng & Yu-En Lin & Peng Zhu, 2023. "Does Soil Pollution Prevention and Control Promote Corporate Sustainable Development? A Quasi-Natural Experiment of “10-Point Soil Plan” in China," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    8. Liu, Xiaoxuan & Yu, Le & Cai, Wenjia & Ding, Qun & Hu, Weixun & Peng, Dailiang & Li, Wei & Zhou, Zheng & Huang, Xiaomeng & Yu, Chaoqing & Gong, Peng, 2021. "The land footprint of the global food trade: Perspectives from a case study of soybeans," Land Use Policy, Elsevier, vol. 111(C).
    9. Bocheng Zhang & Zechuan Dai & Yanxu Chen & Mingyu Cheng & Huaikun Zhang & Pingyi Feng & Buqi Ke & Yangyang Zhang & Genqiang Zhang, 2024. "Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Zhen Yang & Weijun Gao & Jiawei Li, 2022. "Can Economic Growth and Environmental Protection Achieve a “Win–Win” Situation? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    11. Mingqing Liu & Yuncheng Wu & Sijie Huang & Yuwen Yang & Yan Li & Lei Wang & Yunguan Xi & Jibing Zhang & Qiuhui Chen, 2022. "Effects of Organic Fertilization Rates on Surface Water Nitrogen and Phosphorus Concentrations in Paddy Fields," Agriculture, MDPI, vol. 12(9), pages 1-12, September.
    12. Wenqin Jiang & Jian Zhang & Qiulin Yang & Ping Yang, 2024. "The Effect of Electricity Generation on the Performance of Microbial Fuel Cells for Anammox," Sustainability, MDPI, vol. 16(7), pages 1-19, March.
    13. Xie, Zheyu & Zhang, Yujing & Zhang, Zhenyu & Huang, Jinliang, 2023. "Nitrate removal mechanism in riparian groundwater in an intensified agricultural catchment," Agricultural Water Management, Elsevier, vol. 280(C).
    14. Homayounfar, Mehran & Muneepeerakul, Rachata & Martinez, Christopher J., 2023. "Navigating farming-BMP-policy interplay through a dynamical model," Ecological Economics, Elsevier, vol. 205(C).
    15. Huiming Xie & Xiaopeng Wang & Manhong Shen & Chu Wei, 2022. "Abatement costs of combatting industrial water pollution: convergence across Chinese provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10752-10767, September.
    16. Mengru Wang & Benjamin Leon Bodirsky & Rhodé Rijneveld & Felicitas Beier & Mirjam P. Bak & Masooma Batool & Bram Droppers & Alexander Popp & Michelle T. H. Vliet & Maryna Strokal, 2024. "A triple increase in global river basins with water scarcity due to future pollution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Wang, Zhong-Jun & Yue, Fu-Jun & Wang, Yu-Chun & Qin, Cai-Qing & Ding, Hu & Xue, Li-Li & Li, Si-Liang, 2022. "The effect of heavy rainfall events on nitrogen patterns in agricultural surface and underground streams and the implications for karst water quality protection," Agricultural Water Management, Elsevier, vol. 266(C).
    18. Mengru Wang & Annette B. G. Janssen & Jeanne Bazin & Maryna Strokal & Lin Ma & Carolien Kroeze, 2022. "Accounting for interactions between Sustainable Development Goals is essential for water pollution control in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Duan, Chenxiao & Li, Jiabei & Zhang, Binbin & Wu, Shufang & Fan, Junliang & Feng, Hao & He, Jianqiang & Siddique, Kadambot H.M., 2023. "Effect of bio-organic fertilizer derived from agricultural waste resources on soil properties and winter wheat (Triticum aestivum L.) yield in semi-humid drought-prone regions," Agricultural Water Management, Elsevier, vol. 289(C).
    20. Kiyotaka Tsunemi & Tohru Kawamoto & Hideyuki Matsumoto, 2023. "Estimation of the Potential Global Nitrogen Flow in a Nitrogen Recycling System with Industrial Countermeasures," Sustainability, MDPI, vol. 15(7), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:4151-:d:784186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.