IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i7p4151-d784186.html
   My bibliography  Save this article

Types and Distribution of Organic Amines in Organic Nitrogen Deposition in Strategic Water Sources

Author

Listed:
  • Yixuan Yang

    (Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China)

  • Tongqian Zhao

    (Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China)

  • Huazhe Jiao

    (School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Li Wu

    (Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China)

  • Chunyan Xiao

    (Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China)

  • Xiaoming Guo

    (Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China)

Abstract

Organic nitrogen (ON) is an important part of atmospheric nitrogen deposition, but the content and distribution of components other than urea and amino acids are the blind area of current research. The deposition of organic amines (OA) in strategic water sources poses a great public health risk to unspecified populations. In order to further reveal the composition of about 50% soluble organic nitrogen, besides urea and amino acids, five functional sampling points (such as industrial area, agricultural area, urban area, tourism area and forest area) were set in the reservoir area to detect dissolved total nitrogen (DTN), dissolved organic nitrogen (DON) and OA components. The results show that the total nitrogen concentration was 6.42–10.82 mg/m 3 and the DON concentration was 2.77–4.99 mg/m 3 . Ten kinds of OA were detected: dimethylamine (DMA), diethylamine (DEA), propylamine (PA), butylamine (BA), pyrrolidine (PYR), dibutylamine (DBA), N-methylaniline (NMA), 2-ethylaniline (2-ELA), benzylamine (BMA), and 4-ethylaniline (4-ELA). The average concentrations were 7.64, 26.35, 14.51, 14.10, 18.55, 7.92, 10.56, 12.84, 13.46 and 21.00 ng/m 3 , respectively. The total concentration of ten OA accounted for 2.28–9.81% of DON in the current month, of which the content of DEA was the highest, reaching 0.71%, the content of 4-ELA, PYR, PA and BA was 0.4–0.56%, and the content of DMA, DBA and NMA was 0.2–0.36%. The sources of OA in the reservoir area have significant seasonal differences. The content is the highest in spring, followed by autumn, and lower in summer and winter. The rainfall in spring and autumn is small, the source of road dust is relatively high, and the rainfall in summer is large. After the particles in the air are washed by rain, the concentration of OA in the sample is the lowest. On account of spring and autumn being the time of frequent agricultural activities, the concentration of OA is significantly higher than that in winter and summer.

Suggested Citation

  • Yixuan Yang & Tongqian Zhao & Huazhe Jiao & Li Wu & Chunyan Xiao & Xiaoming Guo, 2022. "Types and Distribution of Organic Amines in Organic Nitrogen Deposition in Strategic Water Sources," IJERPH, MDPI, vol. 19(7), pages 1-17, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:4151-:d:784186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/7/4151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/7/4151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yixuan Yang & Tongqian Zhao & Huazhe Jiao & Yunfei Wang & Haiyan Li, 2020. "Potential Effect of Porosity Evolution of Cemented Paste Backfill on Selective Solidification of Heavy Metal Ions," IJERPH, MDPI, vol. 17(3), pages 1-12, January.
    2. ChaoQing Yu & Xiao Huang & Han Chen & H. Charles J. Godfray & Jonathon S. Wright & Jim W. Hall & Peng Gong & ShaoQiang Ni & ShengChao Qiao & GuoRui Huang & YuChen Xiao & Jie Zhang & Zhao Feng & XiaoTa, 2019. "Managing nitrogen to restore water quality in China," Nature, Nature, vol. 567(7749), pages 516-520, March.
    3. Yixuan Yang & Tongqian Zhao & Huazhe Jiao & Li Wu & Chunyan Xiao & Xiaoming Guo & Chao Jin, 2022. "Atmospheric Organic Nitrogen Deposition in Strategic Water Sources of China after COVID-19 Lockdown," IJERPH, MDPI, vol. 19(5), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heng Liu & Caizhu Huang & Heng Lian & Xia Cui, 2023. "Hierarchical Spatially Varying Coefficient Process Regression for Modeling Net Anthropogenic Nitrogen Inputs (NANI) from the Watershed of the Yangtze River, China," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    2. Jianqin Ma & Yongqing Wang & Lei Liu & Bifeng Cui & Yu Ding & Lansong Liu, 2025. "Research on Summer Maize Irrigation and Fertilization Strategy in Henan Province Based on Multi-Objective Optimization Model," Sustainability, MDPI, vol. 17(5), pages 1-13, February.
    3. Li Wang & Siyuan Liu & Wendi Xuan & Shaopeng Li & Anlei Wei, 2022. "Efficient Nitrate Adsorption from Groundwater by Biochar-Supported Al-Substituted Goethite," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    4. Mingqing Liu & Yuncheng Wu & Sijie Huang & Yuwen Yang & Yan Li & Lei Wang & Yunguan Xi & Jibing Zhang & Qiuhui Chen, 2022. "Effects of Organic Fertilization Rates on Surface Water Nitrogen and Phosphorus Concentrations in Paddy Fields," Agriculture, MDPI, vol. 12(9), pages 1-12, September.
    5. Mengru Wang & Benjamin Leon Bodirsky & Rhodé Rijneveld & Felicitas Beier & Mirjam P. Bak & Masooma Batool & Bram Droppers & Alexander Popp & Michelle T. H. Vliet & Maryna Strokal, 2024. "A triple increase in global river basins with water scarcity due to future pollution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Wang, Zhong-Jun & Yue, Fu-Jun & Wang, Yu-Chun & Qin, Cai-Qing & Ding, Hu & Xue, Li-Li & Li, Si-Liang, 2022. "The effect of heavy rainfall events on nitrogen patterns in agricultural surface and underground streams and the implications for karst water quality protection," Agricultural Water Management, Elsevier, vol. 266(C).
    7. Duan, Chenxiao & Li, Jiabei & Zhang, Binbin & Wu, Shufang & Fan, Junliang & Feng, Hao & He, Jianqiang & Siddique, Kadambot H.M., 2023. "Effect of bio-organic fertilizer derived from agricultural waste resources on soil properties and winter wheat (Triticum aestivum L.) yield in semi-humid drought-prone regions," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Kiyotaka Tsunemi & Tohru Kawamoto & Hideyuki Matsumoto, 2023. "Estimation of the Potential Global Nitrogen Flow in a Nitrogen Recycling System with Industrial Countermeasures," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    9. Panpan Ji & Jianhui Chen & Ruijin Chen & Jianbao Liu & Chaoqing Yu & Fahu Chen, 2024. "Nitrogen and phosphorus trends in lake sediments of China may diverge," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Qinyi Huang & Yu Zhang, 2021. "Decoupling and Decomposition Analysis of Agricultural Carbon Emissions: Evidence from Heilongjiang Province, China," IJERPH, MDPI, vol. 19(1), pages 1-16, December.
    11. Taotao Chen & Erping Cui & Yanbo Zhang & Ge Gao & Hao You & Yurun Tian & Chao Hu & Yuan Liu & Tao Fan & Xiangyang Fan, 2024. "Microbial Network Complexity Helps to Reduce the Deep Migration of Chemical Fertilizer Nitrogen Under the Combined Application of Varying Irrigation Amounts and Multiple Nitrogen Sources," Agriculture, MDPI, vol. 14(12), pages 1-18, December.
    12. Ouping Deng & Sitong Wang & Jiangyou Ran & Shuai Huang & Xiuming Zhang & Jiakun Duan & Lin Zhang & Yongqiu Xia & Stefan Reis & Jiayu Xu & Jianming Xu & Wim Vries & Mark A. Sutton & Baojing Gu, 2024. "Managing urban development could halve nitrogen pollution in China," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Mehridokht Mortazavi & Mohammad Bagher Zandi & Rostam Pahlavan & Moradpasha Eskandari Nasab & Hinayah Rojas de Oliveira, 2025. "Estimation of Genetic Parameters for Milk Urea Nitrogen in Iranian Holstein Cattle Using Random Regression Models," Agriculture, MDPI, vol. 15(4), pages 1-16, February.
    14. Richard W. McDowell & Dongwen Luo & Peter Pletnyakov & Martin Upsdell & Walter K. Dodds, 2025. "Anthropogenic nutrient inputs cause excessive algal growth for nearly half the world’s population," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    15. Wang, Tian & Xiao, Wenfa & Huang, Zhilin & Zeng, Lixiong, 2022. "Interflow pattern govern nitrogen loss from tea orchard slopes in response to rainfall pattern in Three Gorges Reservoir Area," Agricultural Water Management, Elsevier, vol. 269(C).
    16. Kolluru, Venkatesh & John, Ranjeet & Saraf, Sakshi & Chen, Jiquan & Hankerson, Brett & Robinson, Sarah & Kussainova, Maira & Jain, Khushboo, 2023. "Gridded livestock density database and spatial trends for Kazakhstan," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10, pages 1-15.
    17. Wang, Hongzhang & Ren, Hao & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Li, Geng & Han, Kun & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain," Agricultural Systems, Elsevier, vol. 204(C).
    18. Hou, Peng & Liu, Lu & Tahir, Muhammad & Li, Yan & Wang, Xuejun & Shi, Ning & Xiao, Yang & Ma, Changjian & Li, Yunkai, 2024. "Effect of fertilization on emitter clogging in drip irrigation using high sediment water: Perspective of sediment discharge capacity," Agricultural Water Management, Elsevier, vol. 294(C).
    19. Zhou, Liang & Chen, Wei & Xu, Shang, 2022. "Do rural residents care about domestic waste management? A hedonic analysis of housing prices in rural China," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322212, Agricultural and Applied Economics Association.
    20. Sha Feng & Dandan Fu & Xinru Han & Xiudong Wang, 2022. "Impacts of the Extension of Cassava Soil Conservation and Efficient Technology on the Reduction of Chemical Fertilizer Input in China," Sustainability, MDPI, vol. 14(22), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:4151-:d:784186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.