IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57036-w.html
   My bibliography  Save this article

Late Quaternary fluctuation in upper range limit of trees shapes endemic flora diversity on the Tibetan Plateau

Author

Listed:
  • Jinfeng Xu

    (Chinese Academy of Sciences
    Lanzhou University
    Lanzhou University)

  • Tao Wang

    (Chinese Academy of Sciences)

  • Xiaoyi Wang

    (Chinese Academy of Sciences)

  • Christian Körner

    (University of Basel)

  • Xianyong Cao

    (Chinese Academy of Sciences)

  • Eryuan Liang

    (Chinese Academy of Sciences)

  • Yongping Yang

    (Chinese Academy of Sciences)

  • Shilong Piao

    (Chinese Academy of Sciences
    Peking University)

Abstract

The influence of paleoclimate in shaping current biodiversity pattern is widely acknowledged. However, it remains unclear how the upper paleo-range limit of trees, which dictated the habitat of endemic alpine species, affects the variability in endemic alpine species composition across space over the Tibetan Plateau. We integrated satellite-derived upper range limit of trees, dendrochronological data, and fossil pollen records with a paleoclimate dataset in a climate-driven predictive model to reconstruct the spatio-temporal upper range limit of trees at 100-year intervals since the Last Glacial Maximum. Our results show that trees distributed at the lowest elevations during the Last Glacial Maximum (~3426 m), and ascended to the highest elevations during the Holocene Climatic Optimum (~4187 m), a level ~180 m higher than the present-day (~4009 m). The temporal fluctuations in paleo-range limits of trees play a more important role than paleoclimate in shaping the current spatial pattern of beta-diversity of endemic flora, with regions witnessing higher fluctuations having lower beta-diversity. We therefore suggest that anthropogenic-caused climate change on decadal-to-centennial timescales could lead to higher fluctuations in range limits than orbitally-forced climate variability on centennial-to-millennium timescales, which consequently could cause spatial homogenization of endemic alpine species composition, threatening Tibetan endemic species pool.

Suggested Citation

  • Jinfeng Xu & Tao Wang & Xiaoyi Wang & Christian Körner & Xianyong Cao & Eryuan Liang & Yongping Yang & Shilong Piao, 2025. "Late Quaternary fluctuation in upper range limit of trees shapes endemic flora diversity on the Tibetan Plateau," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57036-w
    DOI: 10.1038/s41467-025-57036-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57036-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57036-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anne Dallmeyer & Thomas Kleinen & Martin Claussen & Nils Weitzel & Xianyong Cao & Ulrike Herzschuh, 2022. "The deglacial forest conundrum," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Godfrey Hewitt, 2000. "The genetic legacy of the Quaternary ice ages," Nature, Nature, vol. 405(6789), pages 907-913, June.
    3. Sisi Liu & Stefan Kruse & Dirk Scherler & Richard H. Ree & Heike H. Zimmermann & Kathleen R. Stoof-Leichsenring & Laura S. Epp & Steffen Mischke & Ulrike Herzschuh, 2021. "Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Garcés-Pastor & Eric Coissac & Sébastien Lavergne & Christoph Schwörer & Jean-Paul Theurillat & Peter D. Heintzman & Owen S. Wangensteen & Willy Tinner & Fabian Rey & Martina Heer & Astrid Rutz, 2022. "High resolution ancient sedimentary DNA shows that alpine plant diversity is associated with human land use and climate change," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Wen-Yong Guo & Josep M. Serra-Diaz & Wolf L. Eiserhardt & Brian S. Maitner & Cory Merow & Cyrille Violle & Matthew J. Pound & Miao Sun & Ferry Slik & Anne Blach-Overgaard & Brian J. Enquist & Jens-Chr, 2023. "Climate change and land use threaten global hotspots of phylogenetic endemism for trees," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Ilaria Bernabò & Viviana Cittadino & Sandro Tripepi & Vittoria Marchianò & Sandro Piazzini & Maurizio Biondi & Mattia Iannella, 2022. "Updating Distribution, Ecology, and Hotspots for Three Amphibian Species to Set Conservation Priorities in a European Glacial Refugium," Land, MDPI, vol. 11(8), pages 1-19, August.
    4. Silvia Marková & Hayley C. Lanier & Marco A. Escalante & Marcos O. R. Cruz & Michaela Horníková & Mateusz Konczal & Lawrence J. Weider & Jeremy B. Searle & Petr Kotlík, 2023. "Local adaptation and future climate vulnerability in a wild rodent," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Silu Wang & Madelyn J. Ore & Else K. Mikkelsen & Julie Lee-Yaw & David P. L. Toews & Sievert Rohwer & Darren Irwin, 2021. "Signatures of mitonuclear coevolution in a warbler species complex," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Fahim Arshad & Muhammad Waheed & Kaneez Fatima & Nidaa Harun & Muhammad Iqbal & Kaniz Fatima & Shaheena Umbreen, 2022. "Predicting the Suitable Current and Future Potential Distribution of the Native Endangered Tree Tecomella undulata (Sm.) Seem. in Pakistan," Sustainability, MDPI, vol. 14(12), pages 1-10, June.
    7. Hallatschek, Oskar & Nelson, David R., 2008. "Gene surfing in expanding populations," Theoretical Population Biology, Elsevier, vol. 73(1), pages 158-170.
    8. Connor M. French & Laura D. Bertola & Ana C. Carnaval & Evan P. Economo & Jamie M. Kass & David J. Lohman & Katharine A. Marske & Rudolf Meier & Isaac Overcast & Andrew J. Rominger & Phillip P. A. Sta, 2023. "Global determinants of insect mitochondrial genetic diversity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Yogesh K. Gupta & Francismar C. Marcelino-Guimarães & Cécile Lorrain & Andrew Farmer & Sajeet Haridas & Everton Geraldo Capote Ferreira & Valéria S. Lopes-Caitar & Liliane Santana Oliveira & Emmanuell, 2023. "Major proliferation of transposable elements shaped the genome of the soybean rust pathogen Phakopsora pachyrhizi," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Gregory Thom & Marcelo Gehara & Brian Tilston Smith & Cristina Y. Miyaki & Fábio Raposo Amaral, 2021. "Microevolutionary dynamics show tropical valleys are deeper for montane birds of the Atlantic Forest," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Ying Liu & Simeon Lisovski & Jérémy Courtin & Kathleen R. Stoof-Leichsenring & Ulrike Herzschuh, 2025. "Plant interactions associated with a directional shift in the richness range size relationship during the Glacial-Holocene transition in the Arctic," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    12. Mauricio Campos & Bo Li & Guillaume Lafontaine & Joseph Napier & Feng Sheng Hu, 2024. "Integrating Different Data Sources Using a Bayesian Hierarchical Model to Unveil Glacial Refugia," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 576-600, September.
    13. Catarina Rato & David James Harris & Ana Perera & Silvia B Carvalho & Miguel A Carretero & Dennis Rödder, 2015. "A Combination of Divergence and Conservatism in the Niche Evolution of the Moorish Gecko, Tarentola mauritanica (Gekkota: Phyllodactylidae)," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    14. Lee Beers & Lisa J. Rowland & Francis Drummond, 2019. "Genetic Diversity of Lowbush Blueberry throughout the United States in Managed and Non-Managed Populations," Agriculture, MDPI, vol. 9(6), pages 1-14, May.
    15. Amaël Borzée & Kevin R Messenger & Shinhyeok Chae & Desiree Andersen & Jordy Groffen & Ye Inn Kim & Junghwa An & Siti N Othman & Kyongsin Ri & Tu Yong Nam & Yoonhyuk Bae & Jin-Long Ren & Jia-Tang Li &, 2020. "Yellow sea mediated segregation between North East Asian Dryophytes species," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-34, June.
    16. Guindon, Stéphane & Guo, Hongbin & Welch, David, 2016. "Demographic inference under the coalescent in a spatial continuum," Theoretical Population Biology, Elsevier, vol. 111(C), pages 43-50.
    17. David G. Green, 2023. "Emergence in complex networks of simple agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 419-462, July.
    18. Yvonne Willi & Kay Lucek & Olivier Bachmann & Nora Walden, 2022. "Recent speciation associated with range expansion and a shift to self-fertilization in North American Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Artur Akhmetov & Ruslan Ianbaev & Svetlana Boronnikova & Yulai Yanbaev & Aygul Gabitova & Aleksey Kulagin, 2021. "Norway maple (Acer platanoides) and pedunculate oak (Quercus robur) demonstrate different patterns of genetic variation within and among populations on the eastern border of distribution ranges," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(11), pages 522-532.
    20. Jérémy Courtin & Kathleen R. Stoof-Leichsenring & Simeon Lisovski & Ying Liu & Inger Greve Alsos & Boris K. Biskaborn & Bernhard Diekmann & Martin Melles & Bernd Wagner & Luidmila Pestryakova & James , 2025. "Potential plant extinctions with the loss of the Pleistocene mammoth steppe," Nature Communications, Nature, vol. 16(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57036-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.