IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7215-d837441.html
   My bibliography  Save this article

Predicting the Suitable Current and Future Potential Distribution of the Native Endangered Tree Tecomella undulata (Sm.) Seem. in Pakistan

Author

Listed:
  • Fahim Arshad

    (Department of Botany, University of Okara, Okara 56300, Pakistan)

  • Muhammad Waheed

    (Department of Botany, University of Okara, Okara 56300, Pakistan)

  • Kaneez Fatima

    (Department of Botany, University of Okara, Okara 56300, Pakistan)

  • Nidaa Harun

    (Department of Botany, University of Okara, Okara 56300, Pakistan)

  • Muhammad Iqbal

    (Department of Botany, University of Okara, Okara 56300, Pakistan)

  • Kaniz Fatima

    (Department of Botany, University of Okara, Okara 56300, Pakistan)

  • Shaheena Umbreen

    (Department of Botany, University of Okara, Okara 56300, Pakistan)

Abstract

The burgeoning human population exhibited a rapid amplification in demand for timber and fuelwood and as a result, the natural population of the native tree Tecomella undulata reduced rapidly due to its high economic and medicinal significance. The recognition of appropriate regions for threatened plants in the climate change scenario is a fundamental step for the restoration and conservation of biodiversity. The current study predicts the potentially suitable areas in Pakistan for T. undulata restoration. This research identifies the highly appropriate regions for vulnerable T. undulata through the maximum entropy model from MaxEnt software. The model’s Area Under Curve 0.968 suggested its accuracy. The mean temperature of the wettest quarter, precipitation of the warmest quarter, and mean temperature in the driest quarter significantly shaped the T. undulata distribution. Future suitable areas for T. undulata were made by using RCP (4.5 and 8.5) for the years 2050 and 2070 through 19 bioclimatic variables and 66 occurrence points. The current highly suitable area for T. undulata is approximately 135,749 km 2 (15.4%) while the unsuitable area identified is approximately 404,917 km 2 (45.91%). The highly suitable area for T. undulata increases by 3.6–7% under climate change regimes (RCP 4.5 and RCP 8.5). The Central Punjab (District Faisalabad, Nankana sahib, Jhang, Kasur, and Okara), Salt Range, Western Khayber Pakhtunkhwa (KPK), FATA area, Eastern Balochistan, and Thar and Tharparker in Sindh are the current appropriate habitats for T. undulata . Under all future climatic circumstances, the extremely appropriate area for T. undulata was anticipated to expand, whereas the unsuitable zones would all shrink. The research would be significant for the further development of T. undulata management and conservation techniques.

Suggested Citation

  • Fahim Arshad & Muhammad Waheed & Kaneez Fatima & Nidaa Harun & Muhammad Iqbal & Kaniz Fatima & Shaheena Umbreen, 2022. "Predicting the Suitable Current and Future Potential Distribution of the Native Endangered Tree Tecomella undulata (Sm.) Seem. in Pakistan," Sustainability, MDPI, vol. 14(12), pages 1-10, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7215-:d:837441
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7215/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7215/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Carrer & Renzo Motta & Paola Nola, 2012. "Significant Mean and Extreme Climate Sensitivity of Norway Spruce and Silver Fir at Mid-Elevation Mesic Sites in the Alps," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    2. Godfrey Hewitt, 2000. "The genetic legacy of the Quaternary ice ages," Nature, Nature, vol. 405(6789), pages 907-913, June.
    3. Keliang Zhang & Yin Zhang & Diwen Jia & Jun Tao, 2020. "Species Distribution Modeling of Sassafras Tzumu and Implications for Forest Management," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    4. T.I. Khan & Anil K. Dular & Deepika M. Solomon, 2003. "Biodiversity Conservation in the Thar Desert; with Emphasis on Endemic and Medicinal Plants," Environment Systems and Decisions, Springer, vol. 23(2), pages 137-144, June.
    5. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Waheed & Shiekh Marifatul Haq & Fahim Arshad & Rainer W. Bussmann & Muhammad Iqbal & Najat A. Bukhari & Ashraf Atef Hatamleh, 2022. "Grasses in Semi-Arid Lowlands—Community Composition and Spatial Dynamics with Special Regard to the Influence of Edaphic Factors," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    2. Muhammad Waheed & Fahim Arshad & Muhammad Majeed & Sammer Fatima & Naila Mukhtar & Robina Aziz & Wali Muhammad Mangrio & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motrih Al-Mutiry & Hazem Ghass, 2022. "Community Structure and Distribution Pattern of Woody Vegetation in Response to Soil properties in Semi-Arid Lowland District Kasur Punjab, Pakistan," Land, MDPI, vol. 11(12), pages 1-18, November.
    3. Muhammad Waheed & Shiekh Marifatul Haq & Fahim Arshad & Muhammad Azhar Jameel & Manzer H. Siddiqui & Rainer W. Bussmann & Nabeel Manshoor & Saud Alamri, 2023. "Where Will Threatened Aegle marmelos L., a Tree of the Semi-Arid Region, Go under Climate Change? Implications for the Reintroduction of the Species," Land, MDPI, vol. 12(7), pages 1-19, July.
    4. Muhammad Danish Jamil & Muhammad Waheed & Shamim Akhtar & Nazneen Bangash & Sunbal Khalil Chaudhari & Muhammad Majeed & Mumtaz Hussain & Kishwar Ali & David Aaron Jones, 2022. "Invasive Plants Diversity, Ecological Status, and Distribution Pattern in Relation to Edaphic Factors in Different Habitat Types of District Mandi Bahauddin, Punjab, Pakistan," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    5. Xumin Li & Zhiwen Yao & Qing Yuan & Rui Xing & Yuqin Guo & Dejun Zhang & Israr Ahmad & Wenhui Liu & Hairui Liu, 2023. "Prediction of Potential Distribution Area of Two Parapatric Species in Triosteum under Climate Change," Sustainability, MDPI, vol. 15(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    4. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    6. Ilaria Bernabò & Viviana Cittadino & Sandro Tripepi & Vittoria Marchianò & Sandro Piazzini & Maurizio Biondi & Mattia Iannella, 2022. "Updating Distribution, Ecology, and Hotspots for Three Amphibian Species to Set Conservation Priorities in a European Glacial Refugium," Land, MDPI, vol. 11(8), pages 1-19, August.
    7. Hao Wang & Guohua Liu & Zongshan Li & Xin Ye & Bojie Fu & Yihe Lü, 2017. "Analysis of the Driving Forces in Vegetation Variation in the Grain for Green Program Region, China," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    8. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    9. Xiumei Wang & Jianjun Dong & Taogetao Baoyin & Yuhai Bao, 2019. "Estimation and Climate Factor Contribution of Aboveground Biomass in Inner Mongolia’s Typical/Desert Steppes," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    10. Anna Yusa & Peter Berry & June J.Cheng & Nicholas Ogden & Barrie Bonsal & Ronald Stewart & Ruth Waldick, 2015. "Climate Change, Drought and Human Health in Canada," IJERPH, MDPI, vol. 12(7), pages 1-54, July.
    11. Portalier, S.M.J. & Candau, J.-N. & Lutscher, F., 2024. "Larval mortality from phenological mismatch can affect outbreak frequency and severity of a boreal forest defoliator," Ecological Modelling, Elsevier, vol. 493(C).
    12. A. Ogden & J. Innes, 2008. "Climate change adaptation and regional forest planning in southern Yukon, Canada," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(8), pages 833-861, October.
    13. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    14. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    15. Prem B. Parajuli & Priyantha Jayakody & Ying Ouyang, 2018. "Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 985-996, February.
    16. Fullman, Timothy J. & Bunting, Erin L. & Kiker, Gregory A. & Southworth, Jane, 2017. "Predicting shifts in large herbivore distributions under climate change and management using a spatially-explicit ecosystem model," Ecological Modelling, Elsevier, vol. 352(C), pages 1-18.
    17. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    18. Debora Sotto & Arlindo Philippi & Tan Yigitcanlar & Md Kamruzzaman, 2019. "Aligning Urban Policy with Climate Action in the Global South: Are Brazilian Cities Considering Climate Emergency in Local Planning Practice?," Energies, MDPI, vol. 12(18), pages 1-31, September.
    19. Jilin Wu & Manhong Yang & Jinyou Zuo & Ningling Yin & Yimin Yang & Wenhai Xie & Shuiliang Liu, 2024. "Spatio-Temporal Evolution of Ecological Resilience in Ecologically Fragile Areas and Its Influencing Factors: A Case Study of the Wuling Mountains Area, China," Sustainability, MDPI, vol. 16(9), pages 1-21, April.
    20. Baris Karapinar & Gökhan Özertan, 2020. "Yield implications of date and cultivar adaptation to wheat phenological shifts: a survey of farmers in Turkey," Climatic Change, Springer, vol. 158(3), pages 453-472, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7215-:d:837441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.