IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57223-9.html
   My bibliography  Save this article

Electrochemical epoxidation enhanced by C2H4 activation and hydroxyl generation at the Ag/SnO2 interface

Author

Listed:
  • Hao Dong

    (Tianjin University; Collaborative Innovation Center for Chemical Science & Engineering)

  • Ran Luo

    (Tianjin University; Collaborative Innovation Center for Chemical Science & Engineering
    International Campus of Tianjin University)

  • Gong Zhang

    (Tianjin University; Collaborative Innovation Center for Chemical Science & Engineering)

  • Lulu Li

    (Tianjin University; Collaborative Innovation Center for Chemical Science & Engineering)

  • Chaoxi Wang

    (Tianjin University; Collaborative Innovation Center for Chemical Science & Engineering
    International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education)

  • Guodong Sun

    (Tianjin University; Collaborative Innovation Center for Chemical Science & Engineering
    International Campus of Tianjin University)

  • Hongyi Wang

    (Tianjin University; Collaborative Innovation Center for Chemical Science & Engineering
    International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education)

  • Jiachang Liu

    (Tianjin University; Collaborative Innovation Center for Chemical Science & Engineering
    International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education)

  • Tuo Wang

    (Tianjin University; Collaborative Innovation Center for Chemical Science & Engineering
    International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education
    Haihe Laboratory of Sustainable Chemical Transformations
    Tianjin University)

  • Zhi-Jian Zhao

    (Tianjin University; Collaborative Innovation Center for Chemical Science & Engineering
    International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education
    Haihe Laboratory of Sustainable Chemical Transformations
    Tianjin University)

  • Peng Zhang

    (Tianjin University; Collaborative Innovation Center for Chemical Science & Engineering
    International Campus of Tianjin University
    International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Jinlong Gong

    (Tianjin University; Collaborative Innovation Center for Chemical Science & Engineering
    International Campus of Tianjin University
    International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education
    Haihe Laboratory of Sustainable Chemical Transformations)

Abstract

Direct electrochemical ethylene (C2H4) epoxidation with water (H2O) represents a promising approach for the production of value-added ethylene oxide (EO) in a sustainable way. However, the activity remains limited due to the sluggish activation of C2H4 and the stiff formation of *OH intermediate. This paper describes the design of a Ag/SnO2 electrocatalyst to achieve efficient electrochemical C2H4 epoxidation with a high faradaic efficiency of 39.4% for EO and a high selectivity of 91.5% at 25 mA/cm2 in a membrane electrode assembly. Results of in situ attenuated total reflection infrared spectra characterizations and computational calculations reveal that the Ag/SnO2 interface promotes C2H4 adsorption and activation to obtain *C2H4. Moreover, electrophilic *OH is generated on the catalyst surface through H2O dissociation, which further reacts with *C2H4 to facilitate the formation of *C2H4OH, contributing to the enhanced electrochemical epoxidation activity. This work would provide general guidance for designing catalysts for electrochemical olefin epoxidation through interface engineering.

Suggested Citation

  • Hao Dong & Ran Luo & Gong Zhang & Lulu Li & Chaoxi Wang & Guodong Sun & Hongyi Wang & Jiachang Liu & Tuo Wang & Zhi-Jian Zhao & Peng Zhang & Jinlong Gong, 2025. "Electrochemical epoxidation enhanced by C2H4 activation and hydroxyl generation at the Ag/SnO2 interface," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57223-9
    DOI: 10.1038/s41467-025-57223-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57223-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57223-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wensheng Fang & Wei Guo & Ruihu Lu & Ya Yan & Xiaokang Liu & Dan Wu & Fu Min Li & Yansong Zhou & Chaohui He & Chenfeng Xia & Huiting Niu & Sicong Wang & Youwen Liu & Yu Mao & Chengyi Zhang & Bo You & , 2024. "Publisher Correction: Durable CO2 conversion in the proton-exchange membrane system," Nature, Nature, vol. 627(8005), pages 13-13, March.
    2. Rubén Rizo & Julia Fernández-Vidal & Laurence J. Hardwick & Gary A. Attard & Francisco J. Vidal-Iglesias & Victor Climent & Enrique Herrero & Juan M. Feliu, 2022. "Investigating the presence of adsorbed species on Pt steps at low potentials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Jingwen Ke & Jiankang Zhao & Mingfang Chi & Menglin Wang & Xiangdong Kong & Qixuan Chang & Weiran Zhou & Chengxuan Long & Jie Zeng & Zhigang Geng, 2022. "Facet-dependent electrooxidation of propylene into propylene oxide over Ag3PO4 crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Wensheng Fang & Wei Guo & Ruihu Lu & Ya Yan & Xiaokang Liu & Dan Wu & Fu Min Li & Yansong Zhou & Chaohui He & Chenfeng Xia & Huiting Niu & Sicong Wang & Youwen Liu & Yu Mao & Chengyi Zhang & Bo You & , 2024. "Durable CO2 conversion in the proton-exchange membrane system," Nature, Nature, vol. 626(7997), pages 86-91, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Huiying Deng & Tingting Liu & Wenshan Zhao & Jundong Wang & Yuesheng Zhang & Shuzhen Zhang & Yu Yang & Chao Yang & Wenzhi Teng & Zhuo Chen & Gengfeng Zheng & Fengwang Li & Yaqiong Su & Jingshu Hui & Y, 2024. "Substituent tuning of Cu coordination polymers enables carbon-efficient CO2 electroreduction to multi-carbon products," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Weisong Liu & Kuncheng Zhang & Jiang Liu & Yuanming Wang & Meng Zhang & Huijuan Cui & Junsong Sun & Lingling Zhang, 2024. "Bioelectrocatalytic carbon dioxide reduction by an engineered formate dehydrogenase from Thermoanaerobacter kivui," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Zhitong Wang & Dongyu Liu & Chenfeng Xia & Xiaodong Shi & Yansong Zhou & Qiuwen Liu & Jiangtao Huang & Haiyan Wu & Deyu Zhu & Shuyu Zhang & Jing Li & Peilin Deng & Andrey S. Vasenko & Bao Yu Xia & Xin, 2025. "Tip carbon encapsulation customizes cationic enrichment and valence stabilization for low K+ acidic CO2 electroreduction," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Lirong Guo & Rongchen Chu & Xinyu Hao & Yu Lei & Haibin Li & Dongge Ma & Guo Wang & Chen-Ho Tung & Yifeng Wang, 2024. "Ag3PO4 enables the generation of long-lived radical cations for visible light-driven [2 + 2] and [4 + 2] pericyclic reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Mingfang Chi & Jingwen Ke & Yan Liu & Miaojin Wei & Hongliang Li & Jiankang Zhao & Yuxuan Zhou & Zhenhua Gu & Zhigang Geng & Jie Zeng, 2024. "Spatial decoupling of bromide-mediated process boosts propylene oxide electrosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Benedikt Axel Brandes & Yogeshwaran Krishnan & Fabian Luca Buchauer & Heine Anton Hansen & Johan Hjelm, 2024. "Unifying the ORR and OER with surface oxygen and extracting their intrinsic activities on platinum," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Kang Yang & Ming Li & Tianqi Gao & Guoliang Xu & Di Li & Yao Zheng & Qiang Li & Jingjing Duan, 2024. "An acid-tolerant metal-organic framework for industrial CO2 electrolysis using a proton exchange membrane," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Kaihang Yue & Yanyang Qin & Honghao Huang & Zhuoran Lv & Mingzhi Cai & Yaqiong Su & Fuqiang Huang & Ya Yan, 2024. "Stabilized Cu0 -Cu1+ dual sites in a cyanamide framework for selective CO2 electroreduction to ethylene," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Carlos A. Campos-Roldán & Amir Gasmi & Meryem Ennaji & Morgane Stodel & Isaac Martens & Jean-Sébastien Filhol & Pierre-Yves Blanchard & Sara Cavaliere & Deborah Jones & Jakub Drnec & Raphaël Chattot, 2025. "Metal-oxide phase transition of platinum nanocatalyst below fuel cell open-circuit voltage," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    11. Chen, Jiahui & Wu, Shiliang & Pan, Xian & Zhou, Xin & Zhang, Xinchi, 2025. "Electrochemical reduction hydrogenation, hydrogenolysis and dimerization of bio-derived aldehydes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57223-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.