IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56865-z.html
   My bibliography  Save this article

Digital aberration correction for enhanced thick tissue imaging exploiting aberration matrix and tilt-tilt correlation from the optical memory effect

Author

Listed:
  • ChulMin Oh

    (Korea Advanced Institute of Science and Technology
    KAIST)

  • Herve Hugonnet

    (Korea Advanced Institute of Science and Technology
    KAIST)

  • Moosung Lee

    (Korea Advanced Institute of Science and Technology
    KAIST
    Universität Stuttgart
    University of Stuttgart)

  • YongKeun Park

    (Korea Advanced Institute of Science and Technology
    KAIST
    Inc.)

Abstract

Optical aberrations significantly impair microscopic image quality across various domains, including cell biology and histopathology diagnostics. Traditional adaptive optics techniques, such as wavefront shaping and guide star utilization, face challenges, especially in imaging biological tissues. Here, we introduce a computational adaptive optics approach tailored for optically thick samples. Utilizing the tilt-tilt correlation from the optical memory effect, our method detects phase differences in aberrations caused by small tilts in the incident waves. Experimental validation demonstrates our technique’s capacity to enhance imaging of thick human tissues under substantial aberration conditions using a transmission-mode holotomography setup. Remarkably, our approach works robustly against sample movement, which is essential for enhanced imaging accuracy in critical biomedical applications.

Suggested Citation

  • ChulMin Oh & Herve Hugonnet & Moosung Lee & YongKeun Park, 2025. "Digital aberration correction for enhanced thick tissue imaging exploiting aberration matrix and tilt-tilt correlation from the optical memory effect," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56865-z
    DOI: 10.1038/s41467-025-56865-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56865-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56865-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Flavien Bureau & Justine Robin & Arthur Ber & William Lambert & Mathias Fink & Alexandre Aubry, 2023. "Three-dimensional ultrasound matrix imaging," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Moonseok Kim & Yonghyeon Jo & Jin Hee Hong & Suhyun Kim & Seokchan Yoon & Kyung-Deok Song & Sungsam Kang & Byunghak Lee & Guang Hoon Kim & Hae-Chul Park & Wonshik Choi, 2019. "Label-free neuroimaging in vivo using synchronous angular scanning microscopy with single-scattering accumulation algorithm," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Wonjun Choi & Munkyu Kang & Jin Hee Hong & Ori Katz & Byunghak Lee & Guang Hoon Kim & Youngwoon Choi & Wonshik Choi, 2022. "Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Sébastien Popoff & Geoffroy Lerosey & Mathias Fink & Albert Claude Boccara & Sylvain Gigan, 2010. "Image transmission through an opaque material," Nature Communications, Nature, vol. 1(1), pages 1-5, December.
    5. Sungsam Kang & Pilsung Kang & Seungwon Jeong & Yongwoo Kwon & Taeseok D. Yang & Jin Hee Hong & Moonseok Kim & Kyung–Deok Song & Jin Hyoung Park & Jun Ho Lee & Myoung Joon Kim & Ki Hean Kim & Wonshik C, 2017. "High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanghyeon Park & Yonghyeon Jo & Minsu Kang & Jin Hee Hong & Sangyoon Ko & Suhyun Kim & Sangjun Park & Hae Chul Park & Sang-Hee Shim & Wonshik Choi, 2023. "Label-free adaptive optics single-molecule localization microscopy for whole zebrafish," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Ulysse Najar & Victor Barolle & Paul Balondrade & Mathias Fink & Claude Boccara & Alexandre Aubry, 2024. "Harnessing forward multiple scattering for optical imaging deep inside an opaque medium," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Ye-Ryoung Lee & Dong-Young Kim & Yonghyeon Jo & Moonseok Kim & Wonshik Choi, 2023. "Exploiting volumetric wave correlation for enhanced depth imaging in scattering medium," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yongwoo Kwon & Jin Hee Hong & Sungsam Kang & Hojun Lee & Yonghyeon Jo & Ki Hean Kim & Seokchan Yoon & Wonshik Choi, 2023. "Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Wonjun Choi & Munkyu Kang & Jin Hee Hong & Ori Katz & Byunghak Lee & Guang Hoon Kim & Youngwoon Choi & Wonshik Choi, 2022. "Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Flavien Bureau & Justine Robin & Arthur Ber & William Lambert & Mathias Fink & Alexandre Aubry, 2023. "Three-dimensional ultrasound matrix imaging," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Molly A. May & Nicolas Barré & Kai K. Kummer & Michaela Kress & Monika Ritsch-Marte & Alexander Jesacher, 2021. "Fast holographic scattering compensation for deep tissue biological imaging," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Md Sadman Sakib Rahman & Tianyi Gan & Emir Arda Deger & Çağatay Işıl & Mona Jarrahi & Aydogan Ozcan, 2023. "Learning diffractive optical communication around arbitrary opaque occlusions," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Y. Jauregui-Sánchez & H. Penketh & J. Bertolotti, 2022. "Tracking moving objects through scattering media via speckle correlations," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    10. Rodrigo Gutiérrez-Cuevas & Dorian Bouchet & Julien Rosny & Sébastien M. Popoff, 2024. "Reaching the precision limit with tensor-based wavefront shaping," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Sungsam Kang & Yongwoo Kwon & Hojun Lee & Seho Kim & Jin Hee Hong & Seokchan Yoon & Wonshik Choi, 2023. "Tracing multiple scattering trajectories for deep optical imaging in scattering media," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56865-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.