IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56189-y.html
   My bibliography  Save this article

Atomically thin high-entropy oxides via naked metal ion self-assembly for proton exchange membrane electrolysis

Author

Listed:
  • Tao Zhang

    (Nanyang Technological University)

  • Qingyi Liu

    (Nanyang Technological University)

  • Haoming Bao

    (Nanyang Technological University)

  • Mingyue Wang

    (University of Wollongong)

  • Nana Wang

    (University of Technology Sydney)

  • Bao Zhang

    (University of Electronic Science and Technology of China)

  • Hong Jin Fan

    (Nanyang Technological University)

Abstract

Designing efficient Ruthenium-based catalysts as practical anodes is of critical importance in proton exchange membrane water electrolysis. Here, we develop a self-assembly technique to synthesize 1 nm-thick rutile-structured high-entropy oxides (RuIrFeCoCrO2) from naked metal ions assembly and oxidation at air-molten salt interface. The RuIrFeCoCrO2 requires an overpotential of 185 mV at 10 m A cm−2 and maintains the high activity for over 1000 h in an acidic electrolyte via the adsorption evolution mechanism. We discuss the role of each element in the RuIrFeCoCrO2 and find that the Cr, Co, and Ir sites contribute to the catalytic activity, while the Cr atoms weaken the Ru-O bond covalency and improves the catalyst stability. The assembled proton exchange membrane electrolyzer operates stably for more than 600 h at a large current of 1 A cm−2. The naked ion assembly demonstrated in this work may provide an effective pathway for the controlled synthesis of a diversity of high-entropy materials.

Suggested Citation

  • Tao Zhang & Qingyi Liu & Haoming Bao & Mingyue Wang & Nana Wang & Bao Zhang & Hong Jin Fan, 2025. "Atomically thin high-entropy oxides via naked metal ion self-assembly for proton exchange membrane electrolysis," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56189-y
    DOI: 10.1038/s41467-025-56189-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56189-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56189-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ding Chen & Ruohan Yu & Kesong Yu & Ruihu Lu & Hongyu Zhao & Jixiang Jiao & Youtao Yao & Jiawei Zhu & Jinsong Wu & Shichun Mu, 2024. "Bicontinuous RuO2 nanoreactors for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jiace Hao & Zechao Zhuang & Kecheng Cao & Guohua Gao & Chan Wang & Feili Lai & Shuanglong Lu & Piming Ma & Weifu Dong & Tianxi Liu & Mingliang Du & Han Zhu, 2022. "Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Yanrong Xue & Jiwu Zhao & Liang Huang & Ying-Rui Lu & Abdul Malek & Ge Gao & Zhongbin Zhuang & Dingsheng Wang & Cafer T. Yavuz & Xu Lu, 2023. "Stabilizing ruthenium dioxide with cation-anchored sulfate for durable oxygen evolution in proton-exchange membrane water electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Guanghui Cao & Jingjing Liang & Zenglong Guo & Kena Yang & Gang Wang & Huiliu Wang & Xuhao Wan & Zeyuan Li & Yijia Bai & Yile Zhang & Junlin Liu & Yanpeng Feng & Zhenying Zheng & Cai Lu & Guangzhi He , 2023. "Liquid metal for high-entropy alloy nanoparticles synthesis," Nature, Nature, vol. 619(7968), pages 73-77, July.
    5. Yuannan Wang & Mingcheng Zhang & Zhenye Kang & Lei Shi & Yucheng Shen & Boyuan Tian & Yongcun Zou & Hui Chen & Xiaoxin Zou, 2023. "Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Xinyu Ping & Yongduo Liu & Lixia Zheng & Yang Song & Lin Guo & Siguo Chen & Zidong Wei, 2024. "Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Zhan Zhao & Jianpeng Sun & Xiang Li & Shiyu Qin & Chunhu Li & Zisheng Zhang & Zizhen Li & Xiangchao Meng, 2024. "Engineering active and robust alloy-based electrocatalyst by rapid Joule-heating toward ampere-level hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Xing Zheng & Xuan-Xuan Cheng & Ping-Ping Chen & Lin-Lin Wang & Ying Duan & Guo-Jin Feng & Xiao-Ran Wang & Jing-Jing Li & Chao Zhang & Zi-You Yu & Tong-Bu Lu, 2025. "Boosting the durability of RuO2 via confinement effect for proton exchange membrane water electrolyzer," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    2. Yang Liu & Yixuan Wang & Hao Li & Min Gyu Kim & Ziyang Duan & Kainat Talat & Jin Yong Lee & Mingbo Wu & Hyoyoung Lee, 2025. "Effectiveness of strain and dopants on breaking the activity-stability trade-off of RuO2 acidic oxygen evolution electrocatalysts," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    3. Lin He & Menggang Li & Longyu Qiu & Shuo Geng & Yequn Liu & Fenyang Tian & Mingchuan Luo & Hu Liu & Yongsheng Yu & Weiwei Yang & Shaojun Guo, 2024. "Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jiayi Tang & Daqin Guan & Hengyue Xu & Leqi Zhao & Ushtar Arshad & Zijun Fang & Tianjiu Zhu & Manjin Kim & Chi-Wen Pao & Zhiwei Hu & Junjie Ge & Zongping Shao, 2025. "Undoped ruthenium oxide as a stable catalyst for the acidic oxygen evolution reaction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    5. Chenhui Zhou & Lu Li & Zhaoqi Dong & Fan Lv & Hongyu Guo & Kai Wang & Menggang Li & Zhengyi Qian & Na Ye & Zheng Lin & Mingchuan Luo & Shaojun Guo, 2024. "Pinning effect of lattice Pb suppressing lattice oxygen reactivity of Pb-RuO2 enables stable industrial-level electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Zhirong Zhang & Chuanyi Jia & Peiyu Ma & Chen Feng & Jin Yang & Junming Huang & Jiana Zheng & Ming Zuo & Mingkai Liu & Shiming Zhou & Jie Zeng, 2024. "Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Yeji Park & Ho Yeon Jang & Tae Kyung Lee & Taekyung Kim & Doyeop Kim & Dongjin Kim & Hionsuck Baik & Jinwon Choi & Taehyun Kwon & Sung Jong Yoo & Seoin Back & Kwangyeol Lee, 2025. "Atomic-level Ru-Ir mixing in rutile-type (RuIr)O2 for efficient and durable oxygen evolution catalysis," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    8. Yanfeng Shi & Lupeng Wang & Miao Liu & Zuozheng Xu & Peilin Huang & Lizhe Liu & Yuanhong Xu, 2025. "Electron–phonon coupling and coherent energy superposition induce spin-sensitive orbital degeneracy for enhanced acidic water oxidation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    9. Kang, Zhenye & Yang, Gaoqiang & Mo, Jingke, 2024. "Development of an ultra-thin electrode for the oxygen evolution reaction in proton exchange membrane water electrolyzers," Renewable Energy, Elsevier, vol. 224(C).
    10. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Guolin Cao & Sha Yang & Ji-Chang Ren & Wei Liu, 2025. "Electronic descriptors for designing high-entropy alloy electrocatalysts by leveraging local chemical environments," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    12. Yinghao Li & Chun-Kuo Peng & Yuntong Sun & L. D. Nicole Sui & Yu-Chung Chang & San-Yuan Chen & Yingtang Zhou & Yan-Gu Lin & Jong-Min Lee, 2024. "Operando elucidation of hydrogen production mechanisms on sub-nanometric high-entropy metallenes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Jiace Hao & Tongde Wang & Ruohan Yu & Jian Cai & Guohua Gao & Zechao Zhuang & Qi Kang & Shuanglong Lu & Zhenhui Liu & Jinsong Wu & Guangming Wu & Mingliang Du & Dingsheng Wang & Han Zhu, 2024. "Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Qianqian Ji & Bing Tang & Xilin Zhang & Chao Wang & Hao Tan & Jie Zhao & Ruiqi Liu & Mei Sun & Hengjie Liu & Chang Jiang & Jianrong Zeng & Xingke Cai & Wensheng Yan, 2024. "Operando identification of the oxide path mechanism with different dual-active sites for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Yuanfeng Li & Tian Qin & Yuechang Wei & Jing Xiong & Peng Zhang & Kezhen Lai & Hongjie Chi & Xi Liu & Liwei Chen & Xiaolin Yu & Zhen Zhao & Lina Li & Jian Liu, 2023. "A single site ruthenium catalyst for robust soot oxidation without platinum or palladium," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56189-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.