IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30379-4.html
   My bibliography  Save this article

Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts

Author

Listed:
  • Jiace Hao

    (Jiangnan University)

  • Zechao Zhuang

    (Tsinghua University)

  • Kecheng Cao

    (ShanghaiTech University)

  • Guohua Gao

    (Tongji University)

  • Chan Wang

    (Jiangnan University)

  • Feili Lai

    (KU Leuven)

  • Shuanglong Lu

    (Jiangnan University)

  • Piming Ma

    (Jiangnan University)

  • Weifu Dong

    (Jiangnan University)

  • Tianxi Liu

    (Jiangnan University)

  • Mingliang Du

    (Jiangnan University)

  • Han Zhu

    (Jiangnan University)

Abstract

High-entropy alloys have received considerable attention in the field of catalysis due to their exceptional properties. However, few studies hitherto focus on the origin of their outstanding performance and the accurate identification of active centers. Herein, we report a conceptual and experimental approach to overcome the limitations of single-element catalysts by designing a FeCoNiXRu (X: Cu, Cr, and Mn) High-entropy alloys system with various active sites that have different adsorption capacities for multiple intermediates. The electronegativity differences between mixed elements in HEA induce significant charge redistribution and create highly active Co and Ru sites with optimized energy barriers for simultaneously stabilizing OH* and H* intermediates, which greatly enhances the efficiency of water dissociation in alkaline conditions. This work provides an in-depth understanding of the interactions between specific active sites and intermediates, which opens up a fascinating direction for breaking scaling relation issues for multistep reactions.

Suggested Citation

  • Jiace Hao & Zechao Zhuang & Kecheng Cao & Guohua Gao & Chan Wang & Feili Lai & Shuanglong Lu & Piming Ma & Weifu Dong & Tianxi Liu & Mingliang Du & Han Zhu, 2022. "Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30379-4
    DOI: 10.1038/s41467-022-30379-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30379-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30379-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew W. Glasscott & Andrew D. Pendergast & Sondrica Goines & Anthony R. Bishop & Andy T. Hoang & Christophe Renault & Jeffrey E. Dick, 2019. "Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Kohsuke Mori & Naoki Hashimoto & Naoto Kamiuchi & Hideto Yoshida & Hisayoshi Kobayashi & Hiromi Yamashita, 2021. "Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin He & Menggang Li & Longyu Qiu & Shuo Geng & Yequn Liu & Fenyang Tian & Mingchuan Luo & Hu Liu & Yongsheng Yu & Weiwei Yang & Shaojun Guo, 2024. "Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jiace Hao & Tongde Wang & Ruohan Yu & Jian Cai & Guohua Gao & Zechao Zhuang & Qi Kang & Shuanglong Lu & Zhenhui Liu & Jinsong Wu & Guangming Wu & Mingliang Du & Dingsheng Wang & Han Zhu, 2024. "Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Yuanfeng Li & Tian Qin & Yuechang Wei & Jing Xiong & Peng Zhang & Kezhen Lai & Hongjie Chi & Xi Liu & Liwei Chen & Xiaolin Yu & Zhen Zhao & Lina Li & Jian Liu, 2023. "A single site ruthenium catalyst for robust soot oxidation without platinum or palladium," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yinghao Li & Chun-Kuo Peng & Yuntong Sun & L. D. Nicole Sui & Yu-Chung Chang & San-Yuan Chen & Yingtang Zhou & Yan-Gu Lin & Jong-Min Lee, 2024. "Operando elucidation of hydrogen production mechanisms on sub-nanometric high-entropy metallenes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazuki Shun & Kohsuke Mori & Takumi Kidawara & Satoshi Ichikawa & Hiromi Yamashita, 2024. "Heteroatom doping enables hydrogen spillover via H+/e− diffusion pathways on a non-reducible metal oxide," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Feilong Xing & Jiamin Ma & Ken-ichi Shimizu & Shinya Furukawa, 2022. "High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jiace Hao & Tongde Wang & Ruohan Yu & Jian Cai & Guohua Gao & Zechao Zhuang & Qi Kang & Shuanglong Lu & Zhenhui Liu & Jinsong Wu & Guangming Wu & Mingliang Du & Dingsheng Wang & Han Zhu, 2024. "Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Xin Xia & Ziqing Zhou & Yinghui Shang & Yong Yang & Yunlong Zi, 2023. "Metallic glass-based triboelectric nanogenerators," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Xiao-Jue Bai & Caoyu Yang & Zhiyong Tang, 2024. "Enabling long-distance hydrogen spillover in nonreducible metal-organic frameworks for catalytic reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Zhi Wen Chen & Jian Li & Pengfei Ou & Jianan Erick Huang & Zi Wen & LiXin Chen & Xue Yao & GuangMing Cai & Chun Cheng Yang & Chandra Veer Singh & Qing Jiang, 2024. "Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Zhida Gu & Mengke Li & Cheng Chen & Xinglong Zhang & Chengyang Luo & Yutao Yin & Ruifa Su & Suoying Zhang & Yu Shen & Yu Fu & Weina Zhang & Fengwei Huo, 2023. "Water-assisted hydrogen spillover in Pt nanoparticle-based metal–organic framework composites," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30379-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.