IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-55976-x.html
   My bibliography  Save this article

Observation of anomalously large Nernst effects in conducting polymers

Author

Listed:
  • Yingqiao Ma

    (Chinese Academy of Sciences)

  • Xinglong Ren

    (JJ Thomson Avenue)

  • Ye Zou

    (Chinese Academy of Sciences)

  • Wenrui Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Dongyang Wang

    (Chinese Academy of Sciences)

  • Zhen Ji

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Juncheng Fan

    (JJ Thomson Avenue)

  • Chaoyi Yan

    (University of Chinese Academy of Sciences)

  • Lanyi Xiang

    (University of Chinese Academy of Sciences)

  • Gaoyang Ge

    (Peking University)

  • Xiaojuan Dai

    (Chinese Academy of Sciences)

  • Fengjiao Zhang

    (University of Chinese Academy of Sciences)

  • Ting Lei

    (Peking University)

  • Henning Sirringhaus

    (JJ Thomson Avenue)

  • Chong-an Di

    (Chinese Academy of Sciences)

  • Daoben Zhu

    (Chinese Academy of Sciences)

Abstract

As a fundamental thermoelectric phenomenon in many solid-state materials, the Nernst effect has yet to be observed in conducting polymers. This knowledge could provide important insight into their elusive mechanism, which are crucial for flexible optoelectronic and thermoelectric applications. However, within the Landau’s Fermi-liquid picture, the Nernst coefficient has demonstrated to be proportional to the charge mobility, and thus should be negligible in less ordered polymers with inherent low mobility. Here, we challenge this notion by observing an anomalously large Nernst effect in a range of conducting polymers. Specially, the Nernst coefficients in these doped polymers exceed the Fermi-liquid predictions by 2-3 orders of magnitudes with negative mobility dependence. These intriguing observations are attributed to the intrinsic quasi-one-dimensional transport nature in conjugated polymers and their unique chemical doping mechanism. Our research not only provides experimental insights into the non-Fermi-liquid charge transport nature of polymers, but also suggests its universality for other quasi-one-dimensional materials and/or less ordered systems, and opens up exciting possibilities for developing transverse organic thermoelectric applications.

Suggested Citation

  • Yingqiao Ma & Xinglong Ren & Ye Zou & Wenrui Zhao & Dongyang Wang & Zhen Ji & Juncheng Fan & Chaoyi Yan & Lanyi Xiang & Gaoyang Ge & Xiaojuan Dai & Fengjiao Zhang & Ting Lei & Henning Sirringhaus & Ch, 2025. "Observation of anomalously large Nernst effects in conducting polymers," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55976-x
    DOI: 10.1038/s41467-025-55976-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-55976-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-55976-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Li & Pengfei Qiu & Qing Xu & Jun Luo & Yifei Xiong & Jie Xiao & Niraj Aryal & Qiang Li & Lidong Chen & Xun Shi, 2022. "Colossal Nernst power factor in topological semimetal NbSb2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Olivier Cyr-Choinière & R. Daou & Francis Laliberté & David LeBoeuf & Nicolas Doiron-Leyraud & J. Chang & J.-Q. Yan & J.-G. Cheng & J.-S. Zhou & J. B. Goodenough & S. Pyon & T. Takayama & H. Takagi & , 2009. "Enhancement of the Nernst effect by stripe order in a high-Tc superconductor," Nature, Nature, vol. 458(7239), pages 743-745, April.
    3. R. Daou & J. Chang & David LeBoeuf & Olivier Cyr-Choinière & Francis Laliberté & Nicolas Doiron-Leyraud & B. J. Ramshaw & Ruixing Liang & D. A. Bonn & W. N. Hardy & Louis Taillefer, 2010. "Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor," Nature, Nature, vol. 463(7280), pages 519-522, January.
    4. Akito Sakai & Susumu Minami & Takashi Koretsune & Taishi Chen & Tomoya Higo & Yangming Wang & Takuya Nomoto & Motoaki Hirayama & Shinji Miwa & Daisuke Nishio-Hamane & Fumiyuki Ishii & Ryotaro Arita & , 2020. "Iron-based binary ferromagnets for transverse thermoelectric conversion," Nature, Nature, vol. 581(7806), pages 53-57, May.
    5. Zhiwei Chen & Xinyue Zhang & Jie Ren & Zezhu Zeng & Yue Chen & Jian He & Lidong Chen & Yanzhong Pei, 2021. "Leveraging bipolar effect to enhance transverse thermoelectricity in semimetal Mg2Pb for cryogenic heat pumping," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    6. Tian Liang & Quinn Gibson & Jun Xiong & Max Hirschberger & Sunanda P. Koduvayur & R.J. Cava & N.P. Ong, 2013. "Evidence for massive bulk Dirac fermions in Pb1−xSnxSe from Nernst and thermopower experiments," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
    7. Xiao-Xiang Chen & Jia-Tong Li & Yu-Hui Fang & Xin-Yu Deng & Xue-Qing Wang & Guangchao Liu & Yunfei Wang & Xiaodan Gu & Shang-Da Jiang & Ting Lei, 2022. "High-mobility semiconducting polymers with different spin ground states," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Haoran Tang & Yuanying Liang & Chunchen Liu & Zhicheng Hu & Yifei Deng & Han Guo & Zidi Yu & Ao Song & Haiyang Zhao & Duokai Zhao & Yuanzhu Zhang & Xugang Guo & Jian Pei & Yuguang Ma & Yong Cao & Fei , 2022. "A solution-processed n-type conducting polymer with ultrahigh conductivity," Nature, Nature, vol. 611(7935), pages 271-277, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haihua Hu & Xiaolong Feng & Yu Pan & Vicky Hasse & Honghui Wang & Bin He & Claudia Felser, 2025. "Multipocket synergy towards high thermoelectric performance in topological semimetal TaAs2," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    2. Ravi Gautam & Takamasa Hirai & Abdulkareem Alasli & Hosei Nagano & Tadakatsu Ohkubo & Ken-ichi Uchida & Hossein Sepehri-Amin, 2024. "Creation of flexible spin-caloritronic material with giant transverse thermoelectric conversion by nanostructure engineering," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Luo, Yang & Li, Linlin & Chen, Yiping & Kim, Chang Nyung, 2022. "Influence of geometric parameter and contact resistances on the thermal-electric behavior of a segmented TEG," Energy, Elsevier, vol. 254(PC).
    4. Gao-Yang Ge & Jingcao Xu & Xinyue Wang & Wenxi Sun & Mo Yang & Zi Mei & Xin-Yu Deng & Peiyun Li & Xiran Pan & Jia-Tong Li & Xue-Qing Wang & Zhi Zhang & Shixian Lv & Xiaochuan Dai & Ting Lei, 2025. "On-site biosignal amplification using a single high-spin conjugated polymer," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    5. Hikari Manako & Shoya Ohsumi & Yoshiki J. Sato & R. Okazaki & D. Aoki, 2024. "Large transverse thermoelectric effect induced by the mixed-dimensionality of Fermi surfaces," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Xitong Xu & Jia-Xin Yin & Wenlong Ma & Hung-Ju Tien & Xiao-Bin Qiang & P. V. Sreenivasa Reddy & Huibin Zhou & Jie Shen & Hai-Zhou Lu & Tay-Rong Chang & Zhe Qu & Shuang Jia, 2022. "Topological charge-entropy scaling in kagome Chern magnet TbMn6Sn6," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Bang, Ki Mun & Park, Sang J. & Yu, Hyun & Jin, Hyungyu, 2024. "Large transverse thermopower in shape-engineered tilted leg thermopile," Applied Energy, Elsevier, vol. 368(C).
    8. Chaoyi Yan & Lanyi Xiang & Yu Xiao & Xuefeng Zhang & Ziling Jiang & Boya Zhang & Chenyang Li & Siyu Di & Fengjiao Zhang, 2024. "Lateral intercalation-assisted ionic transport towards high-performance organic electrochemical transistor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Kohei Fujiwara & Yasuyuki Kato & Hitoshi Abe & Shun Noguchi & Junichi Shiogai & Yasuhiro Niwa & Hiroshi Kumigashira & Yukitoshi Motome & Atsushi Tsukazaki, 2023. "Berry curvature contributions of kagome-lattice fragments in amorphous Fe–Sn thin films," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Jingyue Wang & Yuxuan Jiang & Tianhao Zhao & Zhiling Dun & Anna L. Miettinen & Xiaosong Wu & Martin Mourigal & Haidong Zhou & Wei Pan & Dmitry Smirnov & Zhigang Jiang, 2021. "Magneto-transport evidence for strong topological insulator phase in ZrTe5," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    11. Heda Zhang & Jahyun Koo & Chunqiang Xu & Milos Sretenovic & Binghai Yan & Xianglin Ke, 2022. "Exchange-biased topological transverse thermoelectric effects in a Kagome ferrimagnet," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. He Wang & Huili Ma & Nan Gan & Kai Qin & Zhicheng Song & Anqi Lv & Kai Wang & Wenpeng Ye & Xiaokang Yao & Chifeng Zhou & Xiao Wang & Zixing Zhou & Shilin Yang & Lirong Yang & Cuimei Bo & Huifang Shi &, 2024. "Abnormal thermally-stimulated dynamic organic phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. A. Singh & H. Y. Huang & J. D. Xie & J. Okamoto & C. T. Chen & T. Watanabe & A. Fujimori & M. Imada & D. J. Huang, 2022. "Unconventional exciton evolution from the pseudogap to superconducting phases in cuprates," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Tiefeng Liu & Johanna Heimonen & Qilun Zhang & Chi-Yuan Yang & Jun-Da Huang & Han-Yan Wu & Marc-Antoine Stoeckel & Tom P. A. Pol & Yuxuan Li & Sang Young Jeong & Adam Marks & Xin-Yi Wang & Yuttapoom P, 2023. "Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Xueli Yang & Ankang Guo & Jie Yang & Jinyang Chen & Ke Meng & Shunhua Hu & Ran Duan & Mingliang Zhu & Wenkang Shi & Yang Qin & Rui Zhang & Haijun Yang & Jikun Li & Lidan Guo & Xiangnan Sun & Yunqi Liu, 2024. "Halogenated-edge polymeric semiconductor for efficient spin transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Peng Li & Pengfei Qiu & Qing Xu & Jun Luo & Yifei Xiong & Jie Xiao & Niraj Aryal & Qiang Li & Lidong Chen & Xun Shi, 2022. "Colossal Nernst power factor in topological semimetal NbSb2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Hong Xiang & Yongfu Li & Qinglong Liao & Lei Xia & Xiaodong Wu & Huang Zhou & Chunmei Li & Xing Fan, 2024. "Recent Advances in Smart Fabric-Type Wearable Electronics toward Comfortable Wearing," Energies, MDPI, vol. 17(11), pages 1-36, May.
    18. Jiafu Shen & Xi Huang & Yu Dai & Xiaojin Zhang & Fan Xia, 2024. "N-type and P-type series integrated hydrogel thermoelectric cells for low-grade heat harvesting," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Jiahao Pan & Jing Wang & Kuncai Li & Xu Dai & Qing Li & Daotong Chong & Bin Chen & Junjie Yan & Hong Wang, 2024. "Efficient molecular doping of polymeric semiconductors improved by coupled reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55976-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.