IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-55919-6.html
   My bibliography  Save this article

Genetic predisposition to altered blood cell homeostasis is associated with glioma risk and survival

Author

Listed:
  • Linda Kachuri

    (Stanford University School of Medicine
    Stanford University School of Medicine)

  • Geno A. Guerra

    (University of California San Francisco
    University of California San Francisco)

  • Taishi Nakase

    (Stanford University School of Medicine)

  • George A. Wendt

    (University of California San Francisco)

  • Helen M. Hansen

    (University of California San Francisco)

  • Annette M. Molinaro

    (University of California San Francisco
    University of California San Francisco)

  • Paige Bracci

    (University of California San Francisco)

  • Lucie McCoy

    (University of California San Francisco)

  • Terri Rice

    (University of California San Francisco)

  • John K. Wiencke

    (University of California San Francisco
    University of California San Francisco)

  • Jeanette E. Eckel-Passow

    (Mayo Clinic)

  • Robert B. Jenkins

    (Mayo Clinic)

  • Margaret Wrensch

    (University of California San Francisco)

  • Stephen S. Francis

    (University of California San Francisco
    University of California San Francisco
    University of California San Francisco)

Abstract

Glioma is a highly fatal and heterogeneous brain tumor with few known risk factors. Our study examines genetically predicted variability in blood cell indices in relation to glioma risk and survival in 3418 cases and 8156 controls. We find that increased platelet to lymphocyte ratio (PLR) confers an increased risk of glioma (odds ratio (OR) = 1.25, p = 0.005), especially tumors with isocitrate dehydrogenase (IDH) mutations (OR = 1.38, p = 0.007) and IDHmut 1p/19q intact (IDHmut-intact OR = 1.53, p = 0.004) tumors. Genetically inferred increased counts of lymphocytes (IDHmut-intact OR = 0.70, p = 0.004) and neutrophils (IDHmut OR = 0.69, p = 0.019; IDHmut-intact OR = 0.60, p = 0.009) show inverse associations with risk, which may reflect enhanced immune-surveillance. Considering survival, we observe higher mortality risk in patients with IDHmut 1p/19q with genetically predicted increased counts of lymphocytes (hazard ratio (HR) = 1.65, 95% CI: 1.24–2.20), neutrophils (HR = 1.49, 1.13–1.97), and eosinophils (HR = 1.59, 1.18–2.14). Polygenic scores for blood cell traits are also differentially associated with 17 tumor immune microenvironment features in a subtype-specific manner, including signatures related to interferon signaling, PD-1 expression, and T-cell/Cytotoxic responses. Our findings highlight immune-mediated susceptibility mechanisms with potential disease management implications.

Suggested Citation

  • Linda Kachuri & Geno A. Guerra & Taishi Nakase & George A. Wendt & Helen M. Hansen & Annette M. Molinaro & Paige Bracci & Lucie McCoy & Terri Rice & John K. Wiencke & Jeanette E. Eckel-Passow & Robert, 2025. "Genetic predisposition to altered blood cell homeostasis is associated with glioma risk and survival," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55919-6
    DOI: 10.1038/s41467-025-55919-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-55919-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-55919-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chris Wallace, 2021. "A more accurate method for colocalisation analysis allowing for multiple causal variants," PLOS Genetics, Public Library of Science, vol. 17(9), pages 1-11, September.
    2. Gibran Hemani & Kate Tilling & George Davey Smith, 2017. "Orienting the causal relationship between imprecisely measured traits using GWAS summary data," PLOS Genetics, Public Library of Science, vol. 13(11), pages 1-22, November.
    3. Frank Dudbridge & Richard J. Allen & Nuala A. Sheehan & A. Floriaan Schmidt & James C. Lee & R. Gisli Jenkins & Louise V. Wain & Aroon D. Hingorani & Riyaz S. Patel, 2019. "Adjustment for index event bias in genome-wide association studies of subsequent events," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucas A. Mavromatis & Daniel B. Rosoff & Andrew S. Bell & Jeesun Jung & Josephin Wagner & Falk W. Lohoff, 2023. "Multi-omic underpinnings of epigenetic aging and human longevity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Yuandan Wei & Jianxin Zhen & Liang Hu & Yuqin Gu & Yanhong Liu & Xinxin Guo & Zijing Yang & Hao Zheng & Shiyao Cheng & Fengxiang Wei & Likuan Xiong & Siyang Liu, 2024. "Genome-wide association studies of thyroid-related hormones, dysfunction, and autoimmunity among 85,421 Chinese pregnancies," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Yash Patel & Jean Shin & Eeva Sliz & Ariana Tang & Aniket Mishra & Rui Xia & Edith Hofer & Hema Sekhar Reddy Rajula & Ruiqi Wang & Frauke Beyer & Katrin Horn & Max Riedl & Jing Yu & Henry Völzke & Rob, 2024. "Genetic risk factors underlying white matter hyperintensities and cortical atrophy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Fasil Tekola-Ayele & Xuehuo Zeng & Suvo Chatterjee & Marion Ouidir & Corina Lesseur & Ke Hao & Jia Chen & Markos Tesfaye & Carmen J. Marsit & Tsegaselassie Workalemahu & Ronald Wapner, 2022. "Placental multi-omics integration identifies candidate functional genes for birthweight," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Adrienne Tin & Pascal Schlosser & Pamela R. Matias-Garcia & Chris H. L. Thio & Roby Joehanes & Hongbo Liu & Zhi Yu & Antoine Weihs & Anselm Hoppmann & Franziska Grundner-Culemann & Josine L. Min & Vic, 2021. "Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    6. Marina Vabistsevits & George Davey Smith & Tom G. Richardson & Rebecca C. Richmond & Weiva Sieh & Joseph H. Rothstein & Laurel A. Habel & Stacey E. Alexeeff & Bethan Lloyd-Lewis & Eleanor Sanderson, 2024. "Mammographic density mediates the protective effect of early-life body size on breast cancer risk," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Sophie A. Riesmeijer & Zoha Kamali & Michael Ng & Dmitriy Drichel & Bram Piersma & Kerstin Becker & Thomas B. Layton & Jagdeep Nanchahal & Michael Nothnagel & Ahmad Vaez & Hans Christian Hennies & Pau, 2024. "A genome-wide association meta-analysis implicates Hedgehog and Notch signaling in Dupuytren’s disease," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Molly Went & Laura Duran-Lozano & Gisli H. Halldorsson & Andrea Gunnell & Nerea Ugidos-Damboriena & Philip Law & Ludvig Ekdahl & Amit Sud & Gudmar Thorleifsson & Malte Thodberg & Thorunn Olafsdottir &, 2024. "Deciphering the genetics and mechanisms of predisposition to multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Danielle Rasooly & Gina M. Peloso & Alexandre C. Pereira & Hesam Dashti & Claudia Giambartolomei & Eleanor Wheeler & Nay Aung & Brian R. Ferolito & Maik Pietzner & Eric H. Farber-Eger & Quinn Stanton , 2023. "Genome-wide association analysis and Mendelian randomization proteomics identify drug targets for heart failure," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Abolfazl Doostparast Torshizi & Dongnhu T. Truong & Liping Hou & Bart Smets & Christopher D. Whelan & Shuwei Li, 2024. "Proteogenomic network analysis reveals dysregulated mechanisms and potential mediators in Parkinson’s disease," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Xueyan Wu & Hui Ying & Qianqian Yang & Qian Yang & Haoyu Liu & Yilan Ding & Huiling Zhao & Zhihe Chen & Ruizhi Zheng & Hong Lin & Shuangyuan Wang & Mian Li & Tiange Wang & Zhiyun Zhao & Min Xu & Yuhon, 2024. "Transcriptome-wide Mendelian randomization during CD4+ T cell activation reveals immune-related drug targets for cardiometabolic diseases," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Yanjun Guo & Quanhong Liu & Zhilin Zheng & Mengxia Qing & Tianci Yao & Bin Wang & Min Zhou & Dongming Wang & Qinmei Ke & Jixuan Ma & Zhilei Shan & Weihong Chen, 2024. "Genetic association of inflammatory marker GlycA with lung function and respiratory diseases," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Liza Darrous & Gibran Hemani & George Davey Smith & Zoltán Kutalik, 2024. "PheWAS-based clustering of Mendelian Randomisation instruments reveals distinct mechanism-specific causal effects between obesity and educational attainment," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Yingbo Huang & Yuting Shan & Weijie Zhang & Adam M. Lee & Feng Li & Barbara E. Stranger & R. Stephanie Huang, 2023. "Deciphering genetic causes for sex differences in human health through drug metabolism and transporter genes," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Karl Smith-Byrne & Åsa Hedman & Marios Dimitriou & Trishna Desai & Alexandr V. Sokolov & Helgi B. Schioth & Mine Koprulu & Maik Pietzner & Claudia Langenberg & Joshua Atkins & Ricardo Cortez Penha & J, 2024. "Identifying therapeutic targets for cancer among 2074 circulating proteins and risk of nine cancers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Anders Mälarstig & Felix Grassmann & Leo Dahl & Marios Dimitriou & Dianna McLeod & Marike Gabrielson & Karl Smith-Byrne & Cecilia E. Thomas & Tzu-Hsuan Huang & Simon K. G. Forsberg & Per Eriksson & Mi, 2023. "Evaluation of circulating plasma proteins in breast cancer using Mendelian randomisation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Bryan R. Gorman & Sun-Gou Ji & Michael Francis & Anoop K. Sendamarai & Yunling Shi & Poornima Devineni & Uma Saxena & Elizabeth Partan & Andrea K. DeVito & Jinyoung Byun & Younghun Han & Xiangjun Xiao, 2024. "Multi-ancestry GWAS meta-analyses of lung cancer reveal susceptibility loci and elucidate smoking-independent genetic risk," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Molly Went & Amit Sud & Charlie Mills & Abi Hyde & Richard Culliford & Philip Law & Jayaram Vijayakrishnan & Ines Gockel & Carlo Maj & Johannes Schumacher & Claire Palles & Martin Kaiser & Richard Hou, 2024. "Phenome-wide Mendelian randomisation analysis of 378,142 cases reveals risk factors for eight common cancers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Liam McAllan & Damir Baranasic & Sergio Villicaña & Scarlett Brown & Weihua Zhang & Benjamin Lehne & Marco Adamo & Andrew Jenkinson & Mohamed Elkalaawy & Borzoueh Mohammadi & Majid Hashemi & Nadia Fer, 2023. "Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Eeva Sliz & Jaakko S. Tyrmi & Nilufer Rahmioglu & Krina T. Zondervan & Christian M. Becker & Outi Uimari & Johannes Kettunen, 2023. "Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55919-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.